Skip to main content
Log in

Three-dimensional freezing of water in a copper foils porous layer around a coolant-carrying tube

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Three-dimensional freezing of water around a coolant carrying horizontal tube placed in an adiabatic rectangular cavity partially including copper foils is investigated numerically and by experiment. Both, enhancement of freezing and a uniform freezing rate are achieved. The present numerical analysis predicts well the transient solid fraction found by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

c :

Specific heat

C :

Coefficient in the PCM flow resistance (=−10−6, Eq. 8)

d 1 :

Diameter of the domain 1 without copper foils

d i :

Inner diameter of the tube (=17.05 mm)

d o :

Outer diameter of the tube (=19.05 mm)

DTF :

Temperature range (0.05 °C) in the mushy zone (0 < f s < 1)

f :

Mass fraction

F :

Flow resistance per unite area perpendicular to the flow direction (Eq. 8)

h f :

Latent heat of freezing

H :

Height/width of the rectangular cavity (=12 cm)

k :

(effective) Thermal conductivity

L :

Tube length (=40 cm)

n :

Copper foil number

p :

Copper foil thickness (=35 μm)

P :

Coefficient in the flow resistance of the copper foils porous layer (Eq. 9)

r 1 :

Distance in the domain 1 (=(d 1 − d o )/2, without copper foils, see Fig. 1)

Fig. 1
figure 1

Physical model and coordinate system

t :

Time

T :

Temperature

T ph :

Freezing temperature (=0 °C)

U :

x-Component velocity

v :

y-Component velocity

V PCM :

PCM volume \( ( = L[\gamma_{f2} (H^{2} - \pi d_{1}^{2} /4) + \pi \gamma_{f1} (d_{1}^{2} - d_{o}^{2} )4]) \)

V bare :

Bare volume of the cavity (\( = L[H^{2} - \pi d_{o}^{2} /4],\,\gamma {}_{f1} = \gamma_{f2} = 1 \) in V PCM)

w :

z-Component velocity

w m :

Mean velocity of the coolant in the tube (=0.0245 m/s)

x :

Horizontal coordinate

y :

Vertical coordinate

z :

Axial coordinate

γ:

Volume fraction

γ f :

Porosity, PCM volume fraction (i.e., = γ s+γ = 1 − γ c )

ρ:

Density

υ:

Kinematic viscosity

1:

Domain 1

2:

Domain 2

c:

Copper

clt:

Coolant

f:

PCM

ini:

Initial

inlt:

Inlet

ℓ:

Liquid (water)

s :

Solid (ice)

x :

x-Direction

y :

y-Direction

z :

z-Direction

References

  1. Sugawara M, Komatsu Y, Beer H (2008) Melting and freezing around a horizontal cylinder placed in a square cavity. Heat Mass Transf 45:83–92

    Article  Google Scholar 

  2. Sugawara M, Onodera T, Komatsu Y, Tago M, Beer H (2008) Freezing of water saturated in aluminum wool mats. Heat Mass Transf 44:835–843

    Article  Google Scholar 

  3. Saito A, Utaka Y, Nagakubo S, Katayama K (1983) Study of heat transfer for latent heat storage (in Japanese). Trans Jpn Soc Mech Eng 49–443:1485–1492

    Google Scholar 

  4. Bathelt AG, Van Buren PD, Viskanta R (1981) Heat transfer during solidification around a cooled horizontal cylinder. AIChE Symp Ser 75–189:103–111

    Google Scholar 

  5. Prusa J, Yao LS (1984) Melting around a horizontal heated cylinder: part II—numerical solution for isothermal boundary condition. ASME J Heat Transf 106:469–474

    Article  Google Scholar 

  6. Sasaguchi K, Imura H, Furusho H (1986) Heat transfer characteristics for latent heat storage system with finned tube (1st report: experimental study for solidification and melting processes) (in Japanese). Trans Jpn Soc Mech Eng (Ser B) 52(473):159–166

    Article  Google Scholar 

  7. Sasaguchi K, Imura H, Furusho H (1986) Heat transfer characteristics for latent heat storage system with finned tube (2nd report : comparison of numerical and experiment for solidification processes) (in Japanese). Trans Jpn Soc Mech Eng (Ser B) 52(473):167–173

    Article  Google Scholar 

  8. Rieger H, Beer H (1986) The melting process of ice inside a horizontal cylinder: effects of density anomaly. ASME J Heat Transf 108:166–173

    Article  Google Scholar 

  9. Padmanabhan PV, Murthy MVK (1986) Outward phase change in a cylindrical annulus with axial fins on the inner tube. Int J Heat Mass Transf 29–12:1855–1868

    Article  Google Scholar 

  10. Zhang Y, Faghri A (1995) Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. Int J Heat Mass Transf 39–15:3165–3173

    Google Scholar 

  11. Esen M, Ayhan T (1996) Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase-change materials. Energy Convers Manage 37(12):1775–1785

    Article  Google Scholar 

  12. Chung JD, Lee JS, Yoo H (1997) Thermal instability during the melting process in an isothermally heated horizontal cylinder. Int J Heat Mass Transf 40–16:3899–3907

    Article  Google Scholar 

  13. Sasaguti K, Kusano K, Viskanta R (1997) A numerical analysis of solid–liquid phase change heat transfer around a single and two horizontal, vertically spaced cylinders in a rectangular cavity. Int J Heat Mass Transf 40–6:1343–1354

    Article  Google Scholar 

  14. Esen M, Durmus A, Durmus A (1998) Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Sol Energy 62(1):19–28

    Article  Google Scholar 

  15. Esen M (2000) Thermal performance of a solar-aided latent heat store used for space heating by heat pump. Sol Energy 69(1):15–25

    Article  Google Scholar 

  16. Sari A, Kaygusuz K (2001) Thermal energy storage system using stearic acid as a phase change material. Sol Energy 71:365–376

    Article  Google Scholar 

  17. Sari A, Kaygusuz K (2002) Thermal performance of a eutectic mixture of lauric and stearic acids as PCM encapsulated in the annulus of two concentric pipes. Sol Energy 72:493–504

    Article  Google Scholar 

  18. Fukai J, Hamada Y, Morozumi Y, Miyatake O (2003) Improvement of the thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes. Int J Heat Mass Transf 46:4513–4525

    Article  Google Scholar 

  19. Shatikian V, Ziskind G, Letan R (2005) Numerical investigation of a PCM-based heat sink with internal fins. Int J Heat Mass Transf 48:3689–3706

    Article  MATH  Google Scholar 

  20. Trp A (2005) An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol Energy 79:648–660

    Article  Google Scholar 

  21. Kayansayan N, Acar MA (2006) Ice formation around a finned-tube heat exchanger for cold thermal energy storage. Int J Therm Sci 45:405–418

    Article  Google Scholar 

  22. Ermis K, Erek A, Dincer I (2007) Heat Transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network. Int J Heat Mass Tranf 50:3163–3175

    Article  MATH  Google Scholar 

  23. Agyenim F, Eames P, Smyth M (2009) A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol Energy 83:1509–1520

    Article  Google Scholar 

  24. Sugawara M, Beer H (2009) Numerical analysis for freezing/melting around vertically arranged four cylinders. Heat Mass Transf 45:1223–1231

    Article  Google Scholar 

  25. Sugawara M, Komatsu Y, Makabe T, Beer H (2010) Three dimensional freezing around a coolant-carrying tube. Heat Mass Transf 46:1307–1314

    Article  Google Scholar 

  26. Sugawara M, Komatsu Y, Beer H (2010) Three dimensional melting of ice around a liquid-carrying tube. Heat Mass Transf 47:139–145

    Article  Google Scholar 

  27. Hand book of air conditioning system design, part 4(1965), McGrw hill book company, pp 32–35

  28. Tanaka M, Chisaka F (1990) Effective thermal conductivity of discontinuous and continuous solid system. Kagaku Kougaku (in Japanese) 16:168–173

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support for this study by the technical official T. Fujita.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sugawara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugawara, M., Komatsu, Y., Onodera, D. et al. Three-dimensional freezing of water in a copper foils porous layer around a coolant-carrying tube. Heat Mass Transfer 48, 1847–1854 (2012). https://doi.org/10.1007/s00231-012-1030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1030-x

Keywords

Navigation