Skip to main content
Log in

Algebraic topological techniques for elliptic problems involving fractional Laplacian

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We prove the existence of infinitely many solutions to an elliptic problem by borrowing the techniques from algebraic topology. The solution(s) thus obtained will also be proved to be bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, V., Isernia, T.: On a fractional \(p\)&\(q\) Laplacian problem with critical Sobolev–Hardy exponents. Mediterr. J. Math. 15(6), 219 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahrouni, A., Rǎdulescu, V.D., Repovš, D.D.: A weighted anisotropic variant of the Caffarelli–Kohn–Nirenberg inequality and applications. Nonlinearity 31(4), 1516–1534 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bahrouni, A., Rǎdulescu, V.D., Repovš, D.D.: Double phase transonic flow problems with variable growth: non-linear patterns and stationary waves. Nonlinearity 32(7), 2481–2495 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567–585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhakta, M., Mukherjee, D., et al.: Multiplicity results for \((p;q)\) fractional elliptic equations involving critical nonlinearities. Adv. Differ. Equ. 24(3/4), 185–228 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: Mixed local and nonlocal elliptic operators: regularity and maximum principles. arXiv preprint arxiv:2005.06907v2 [math.AP] (2020)

  7. Cabré, X., Dipierro, S., Valdinoci, E.: The Bernstein technique for integro-differential equations. arXiv preprint arXiv:2010.00376v1 [math.AP] (2020)

  8. Cabré, X., Serra, J.: An extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions. Nonlinear Anal. 137, 246–265 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L., Valdinoci, E.: A priori bounds for solutions of a nonlocal evolution PDE. In: Analysis and Numerics of Partial Differential Equations, Springer INdAM Ser., vol. 4, Springer, Milan, pp. 141–163 (2013)

  10. Chen, F., Yang, Y.: Existence results for fractional \((p, q)\)-Laplacian equations via Morse theory. https://doi.org/10.13140/RG.2.2.30120.80642 (2020)

  11. de la Llave, R., Valdinoci, E.: A generalization of Aubry–Mather theory to partial differential equations and pseudo-differential equations. Ann. Inst. H. Poincaré Anal. Nonlinéaire 26(4), 1309–1344 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dell’Oro, F., Pata, V.: Second order linear evolution equations with general dissipation. arXiv preprint arxiv:1811.07667 [math.AP] (2018)

  13. Dipierro, S., Lippi, E. Proietti, Valdinoci, E.: (Non)local logistic equations with Neumann conditions. arXiv preprint arXiv:2101.02315v1 [math.AP] (2021)

  14. Dipierro, S., Valdinoci, E., Vespri, V.: Decay estimates for evolutionary equations with fractional time-diffusion. J. Evol. Equ. 19(2), 435–462 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferrara, M., Bisci, G.M., Zhang, B.: Existence of weak solutions for non-local fractional problems via Morse theory. Discrete Contin. Dyn. Syst. Ser. B 19(8), 2493–2499 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Ghanmi, A., Saoudi, K.: The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator. Fract. Differ. Calc. 6(2), 201–217 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Saoudi, K., Ghosh, S., Choudhuri, D.: Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity. J. Math. Phys. 60(101509), 1–28 (2019)

    MATH  Google Scholar 

  18. Giacomoni, J., Mukherjee, T., Sreenadh, K.: Positive solutions of fractional elliptic equation with critical and singular nonlinearity. Adv. Nonlinear Anal. 6(3), 327–354 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goel, D., Kumar, D., Sreenadh, K.: Regularity and multiplicity results for fractional \((p;q)\)-Laplacian equations. In: Communications in Contemporary Mathematics (2019). https://doi.org/10.1142/S0219199719500652

  20. Gongbao, L., Guo, Z.: Multiple solutions for the \(p\)&\(q\)-Laplacian problem with critical exponent. Acta Mathematica Scientia 29(4), 903–918 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haitao, Y.: Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem. J. Differ. Equ. 189, 487–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hirano, N., Saccon, C., Shioji, N.: Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities. Adv. Differ. Equ. 9(12), 197–220 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Iannizzotto, A., Papageorgiou N.S.: Existence and multiplicity results for resonant fractional boundary value problems, Discrete Continuous Dyn. Syst. - S, 11(3), 511–531 (2018)

  24. Iannizzotto, A., Liu, S., Perera, K., Squassina, M.: Existence results for fractional p-Laplacian problems via Morse theory. Adv. Calc. Var. 9(2), 101–125 (2016)

  25. Isernia, T.: Fractional \(p\)&\(q\)-Laplacian problems with potentials vanishing at infinity. Opuscula Mathematica 40(1), 93–110 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liang, Z., Song, Y., Su, J.: Existence of solutions to \((2;p)\)-Laplacian equations by Morse theory. Electron. J. Differ. Equ. 1–9, 2017 (2017)

    MathSciNet  Google Scholar 

  28. Marano, S.A., Mosconi, S.J.N., Papageorgiou, N.S.: Multiple solutions to \((p;q)\)- Laplacian problems with resonant concave nonlinearity. In: Advanced Nonlinear Studies (2015). https://doi.org/10.1515/ans-2015-5011

  29. Mimica, A.: Heat kernel estimates for subordinate Brownian motions. Proc. Lond. Math. Soc. 113(5), 627–648 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mugnai, D., Papageorgiou, N.S.: Wang’s multiplicity result for superlinear \((p;q)\)- equations without the Ambrosetti–Rabinowitz condition. Trans. Am. Math. Soc. 366(9), 4919 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mukherjee, T., Sreenadh, K.: Fractional elliptic equations with critical growth and singular nonlinearities. Electron. J. Differ. Equ. 2016(54), 1–23 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Papageorgiou, N.S., Rădulescu, V.D.: Nonlinear nonhomogeneous robin problems with superlinear reaction term. Adv. Nonlinear Stud. 16(4), 737–764 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis-Theory and Methods. Springer Monographs in Mathematics, Springer, Cham (2019)

    Book  MATH  Google Scholar 

  34. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Existence and multiplicity of solutions for double–phase Robin problems, Bull. London Math. Soc., 52 (3), 546–560 (2020)

  35. Perera, K., Agarwal, R.P., O’Regan, D.: Morse theoretic aspects of \(p\)-Laplacian type operators. In: Mathematical Surveys and Monographs, Amer. Math. Soc., p. 161 (2010)

  36. Yin, H., Yang, Z.: Multiplicity of positive solutions to a \(p-q\)-Laplacian equation involving critical nonlinearity. Nonlinear Anal. Theory Methods Appl. 75(6), 3021–3035 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Theorem 4.1

(Theorem 6.2.42 of Papagiorgiou et al. [33]) If X is a Banach space, \(I\in C^1(X)\), I satisfies the Ce-condition, \(K_I\) is finite with \(0\in K_I\), and for some \(k\in {\mathbb {N}}\) we have \(C_k(I,0)\ne 0\), \(C_k(I,\infty )=0\), then there exists a \(u\in K_I\) such that \(\bar{(}u)<0\), \(C_{k-1}(I,u)\ne 0\) or \(I(u)>0\), and \(C_{k+1}(I,u)\ne 0\).

Theorem 4.2

Any solution to (3.2) is in \(L^{\infty }(\Omega )\).

Proof

The argument sketched here is a standard one, and hence we shall only show that an improvement in integrability is possible up to \(L^{\infty }\) assuming an integrability of certain order, say \(p>1\). The boundedness follows from a bootstrap argument. Without loss of generality we can consider the set \(\Omega '=\{x\in \Omega :u(x)>1\}\), and thus by the positivity of a fixed solution (refer Remark 3.2), say, u we have \(u=u^+>0\) a.e. in \(\Omega \). Let \(u\in L^{p}(\Omega )\) for \(p>1\). Let \(a=\max \{\lambda ,|\mu |\}\). On testing with \(u^p\) to obtain the following:

$$\begin{aligned} \begin{aligned} C\Vert u^{\frac{p+1}{2}}\Vert _{2_s^*}^{2}&\le \Vert u^{\frac{p+1}{2}}\Vert \\&\le \left( \lambda \int _{\Omega '}|u|^{p-\gamma }dx+\mu \int _{\Omega '}|u|^{2_s^*-1+p}dx\right) \frac{(p+1)^2}{4p}\\&\le a\left( \int _{\Omega '}|u|^{p}(1+|u|^{2_s^*-1})dx\right) \frac{(p+1)^2}{4p};~\text {since in}~\Omega '~\text {we have}~u>1\\&\le 2a\left( \int _{\Omega '}|u|^{p}|u|^{2_s^*}dx\right) \frac{(p+1)^2}{4p}\\&\le 2a C''\Vert u\Vert _{\beta ^*}^{2_s^*}\Vert u^p\Vert _{{\mathfrak {t}}};~\text {since by using H}\ddot{\mathrm{o}}\text {lder's inequality}. \end{aligned} \end{aligned}$$
(4.1)

Here, \({\mathfrak {t}}=\frac{\beta ^*}{\beta ^*-2_s^*}\) for some \(\beta ^*>1\). Thus, we also have

$$\begin{aligned} \begin{aligned} C'\Vert u^{\frac{p}{2}}\Vert _{\beta ^*}^2&\le C'\Vert u^{\frac{p+1}{2}}\Vert _{\beta ^*}^2\le \Vert u^{\frac{p+1}{2}}\Vert _{2_s^*}^2. \end{aligned} \end{aligned}$$
(4.2)

From the story so far, we know the following

$$\begin{aligned} C'\Vert u^{\frac{p}{2}}\Vert _{\beta ^*}^2&\le 2a C''\Vert u\Vert _{\beta ^*}^{2_s^*}\Vert u^p\Vert _{{\mathfrak {t}}}. \end{aligned}$$
(4.3)

For the fixed \(\beta ^*>1\), we set \(\eta =\frac{\beta ^*}{2{\mathfrak {t}}}>1\) for a suitable choice of t, and \(\tau ={\mathfrak {t}}p\) to get

$$\begin{aligned} \Vert u\Vert _{\eta \tau }&\le C^{\frac{{\mathfrak {t}}}{\tau }}\Vert u\Vert _{\tau };~\text {where}~C=2a C''\Vert u\Vert _{\beta ^*}^{\alpha ^+}~\text {is a fixed quantity for a fixed solution}~u. \end{aligned}$$
(4.4)

Let us now iterate with \(\tau _0={\mathfrak {t}}\), \(\tau _{n+1}=\eta \tau _n=\eta ^{n+1}{\mathfrak {t}}\). After n iterations, the inequality (4.4) yields

$$\begin{aligned} \Vert u\Vert _{\tau _{n+1}}&\le C^{\sum \limits _{i=0}^{n}\frac{{\mathfrak {t}}}{\tau _i}}\prod \limits _{i=0}^{n}\left( \frac{\tau _i}{{\mathfrak {t}}}\right) ^{\frac{{\mathfrak {t}}}{\tau _i}}\Vert u\Vert _{{\mathfrak {t}}}. \end{aligned}$$
(4.5)

By using \(\eta >1\) and the method of iteration, i.e. \(\tau _0={\mathfrak {t}}\), \(\tau _{n+1}=\eta \tau _n=\eta ^{n+1}{\mathfrak {t}}\), we have

$$\begin{aligned} \sum \limits _{i=0}^{\infty }\frac{{\mathfrak {t}}}{\tau _i}=\sum \limits _{i=0}^{\infty }\frac{1}{\eta ^i}=\frac{\eta }{\eta -1}, \end{aligned}$$

and

$$\begin{aligned} \prod \limits _{i=0}^{\infty }\left( \frac{\tau _i}{{\mathfrak {t}}}\right) ^{\frac{{\mathfrak {t}}}{\tau _i}}=\eta ^{\frac{\eta ^2}{(\eta -1)^2}}. \end{aligned}$$

Hence, on passing the limit \(n\rightarrow \infty \) in (4.5), we end up getting

$$\begin{aligned} \Vert u\Vert _{\infty }&\le C^{\frac{\eta }{\eta -1}}\eta ^{\frac{\eta ^2}{(\eta -1)^2}}\Vert u\Vert _{{\mathfrak {t}}}. \end{aligned}$$
(4.6)

Thus, \(u\in L^{\infty }(\Omega )\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A., Choudhuri, D. & Bahrouni, A. Algebraic topological techniques for elliptic problems involving fractional Laplacian. manuscripta math. 170, 563–579 (2023). https://doi.org/10.1007/s00229-021-01355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01355-x

Mathematics Subject Classification

Navigation