Skip to main content
Log in

On a Fractional \( p \& q\) Laplacian Problem with Critical Sobolev–Hardy Exponents

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the following fractional \( p \& q\) Laplacian problem with critical Sobolev–Hardy exponents

$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}_{p} u + (-\Delta )^{s}_{q} u = \frac{|u|^{p^{*}_{s}(\alpha )-2}u}{|x|^{\alpha }}+ \lambda f(x, u) &{} \text{ in } \Omega \\ u=0 &{} \text{ in } \mathbb {R}^{N}{\setminus } \Omega , \end{array} \right. \end{aligned}$$

where \(0<s<1\), \(1\le q<p<\frac{N}{s}\), \((-\Delta )^{s}_{r}\), with \(r\in \{p,q\}\), is the fractional r-Laplacian operator, \(\lambda \) is a positive parameter, \(\Omega \subset \mathbb {R}^{N}\) is an open bounded domain with smooth boundary, \(0\le \alpha <sp\), and \(p^{*}_{s}(\alpha )=\frac{p(N-\alpha )}{N-sp}\) is the so-called Hardy–Sobolev critical exponent. Using concentration-compactness principle and the mountain pass lemma due to Kajikiya [23], we show the existence of infinitely many solutions which tend to be zero provided that \(\lambda \) belongs to a suitable range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, V.: Multiple solutions for a fractional \(p\)-Laplacian equation with sign-changing potential. Electron. J. Differ. Equ. 2016(151), 1–12 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, V.: Nontrivial solutions for a fractional \(p\)-Laplacian problem via Rabier Theorem. Complex Var. Elliptic Equ. 62(6), 838–847 (2017)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, V.: Fractional \(p\)&\(q\) Laplacian problems in \(\mathbb{R}^{N}\) with critical growth. arXiv:1801.10449

  4. Ambrosio, V.: A multiplicity result for a fractional \(p\)-Laplacian problem without growth conditions. Riv. Mat. Univ. Parma 9, 67–85 (2018)

    MathSciNet  Google Scholar 

  5. Ambrosio, V., Isernia, T.: Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional \(p\)-Laplacian. Discret. Contin. Dyn. Syst. 38(11), 5835–5881 (2018)

    Article  Google Scholar 

  6. Barile, S., Figueiredo, G.M.: Existence of a least energy nodal solution for a class of \(p\)&\(q\)-quasilinear elliptic equations. Adv. Nonlinear Stud. 14(2), 511–530 (2014)

    Article  MathSciNet  Google Scholar 

  7. Barile, S., Figueiredo, G.M.: Existence of least energy positive, negative and nodal solutions for a class of \(p\)&\(q\)-problems with potentials vanishing at infinity. J. Math. Anal. Appl. 427(2), 1205–1233 (2015)

    Article  MathSciNet  Google Scholar 

  8. Barrios, B., Medina, M., Peral, I.: Some remarks on the solvability of non-local elliptic problems with the Hardy potential. Commun. Contemp. Math. 16(4), 1350046, 29 (2014)

    Article  MathSciNet  Google Scholar 

  9. Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  10. Chen, C., Bao, J.: Existence, nonexistence, and multiplicity of solutions for the fractional \(p\)&\(q\)-Laplacian equation in \(\mathbb{R}^{N}\). Bound. Value Probl. 153, 16 (2016)

    MATH  Google Scholar 

  11. Cherfils, L., Il’yasov, V.: On the stationary solutions of generalized reaction difusion equations with \(p\)&\(q\)-Laplacian. CPPA 1(4), 1–14 (2004)

    Google Scholar 

  12. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  13. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836 (2014)

    Article  MathSciNet  Google Scholar 

  14. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

    Article  MathSciNet  Google Scholar 

  15. Figueiredo, G.M.: Existence of positive solutions for a class of \(p\)&\(q\) elliptic problems with critical growth on \(\mathbb{R}^N\). J. Math. Anal. Appl. 378, 507–518 (2011)

    Article  MathSciNet  Google Scholar 

  16. Figueiredo, G.M.: Existence and multiplicity of solutions for a class of \(p\)&\(q\) elliptic problems with critical exponent. Math. Nachr. 286(11–12), 1129–1141 (2013)

    Article  MathSciNet  Google Scholar 

  17. Fiscella, A., Pucci, P.: On certain nonlocal Hardy–Sobolev critical elliptic Dirichlet problems. Adv. Differ. Equ. 21(5–6), 571–599 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Fiscella, A., Pucci, P.: Kirchhoff–Hardy fractional problems with lack of compactness. Adv. Nonlinear Stud. 17(3), 429–456 (2017)

    Article  MathSciNet  Google Scholar 

  19. Franzina, G., Palatucci, G.: Fractional p-eigenvalues. Riv. Math. Univ. Parma (N.S.) 5(2), 373–386 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Ghoussoub, N., Shakerian, S.: Borderline variational problems involving fractional Laplacians and critical singularities. Adv. Nonlinear Stud. 15(3), 527–555 (2015)

    Article  MathSciNet  Google Scholar 

  21. He, X., Zou, W.: Infinitely many arbitrarily small solutions for singular elliptic problems with critical Sobolev–Hardy exponents. Proc. Edinburg. Math. Soc. (2) 52(1), 97–108 (2009)

    Article  MathSciNet  Google Scholar 

  22. He, C., Li, G.: The existence of a nontrivial solution to the \(p\)&\(q\)-Laplacian problem with nonlinearity asymptotic to \(u^{p-1}\) at infinity in \(\mathbb{R}^{N}\). Nonlinear Anal. 68(5), 1100–1119 (2008)

    Article  MathSciNet  Google Scholar 

  23. Kajikiya, R.: A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J. Funct. Anal. 225(2), 352–370 (2005)

    Article  MathSciNet  Google Scholar 

  24. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Commun. Math. Phys. 337(3), 1317–1368 (2015)

    Article  MathSciNet  Google Scholar 

  25. Li, G.B., Liang, X.: The existence of nontrivial solutions to nonlinear elliptic equation of \(p-q\)-Laplacian type on \(\mathbb{R}^N\). Nonlinear Anal. 71, 2316–2334 (2009)

    Article  MathSciNet  Google Scholar 

  26. Li, G., Zhang, G.: Multiple solutions for the \(p\)&\(q\)-Laplacian problem with critical exponent. Acta. Math. Sci. Ser. B Engl. Ed. 29(4), 903–918 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Liang, S., Zhang, J.: Multiplicity of solutions for a class of quasi-linear elliptic equation involving the critical Sobolev and Hardy exponents. NoDEA Nonlinear Differ. Equ. Appl. 17(1), 55–67 (2010)

    Article  MathSciNet  Google Scholar 

  28. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. 49, 795–826 (2014)

    Article  MathSciNet  Google Scholar 

  29. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. Part \(II\). Rev. Mat. Iberoam. 1 (2)(1), 45–121 (1985)

    Article  Google Scholar 

  30. Medeiros, E.S., Perera, K.: Multiplicity of solutions for a quasilinear elliptic problem via the cohomoligical index. Nonlinear Anal. 71, 3654–3660 (2009)

    Article  MathSciNet  Google Scholar 

  31. Mawhin, J., Molica Bisci, G.: A Brezis–Nirenberg type result for a nonlocal fractional operator. J. Lond. Math. Soc. (2) 95(1), 73–93 (2017)

    Article  MathSciNet  Google Scholar 

  32. Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195(2), 230–238 (2002)

    Article  MathSciNet  Google Scholar 

  33. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, vol. 162. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  34. Mosconi, S., Squassina, M.: Nonlocal problems at nearly critical growth. Nonlinear Anal. 136, 84–101 (2016)

    Article  MathSciNet  Google Scholar 

  35. Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional \(p\)-Laplacian in \(\mathbb{R}^{N}\). Cal. Var. PDE 54, 2785–806 (2015)

    Article  Google Scholar 

  36. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBME Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence RI (1986)

  37. Yang, J.: Fractional Sobolev–Hardy inequality in \(\mathbb{R}^N\). Nonlinear Anal. 119, 179–185 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for her/his useful comments and valuable suggestions which improved and clarified the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, V., Isernia, T. On a Fractional \( p \& q\) Laplacian Problem with Critical Sobolev–Hardy Exponents. Mediterr. J. Math. 15, 219 (2018). https://doi.org/10.1007/s00009-018-1259-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1259-9

Keywords

Mathematics Subject Classification

Navigation