Skip to main content
Log in

Kähler–Einstein metrics on Pasquier’s two-orbits varieties

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We show that there exist Kähler–Einstein metrics on two exceptional Pasquier’s two-orbits varieties. As an application, we will provide a new example of K-unstable Fano manifold with Picard number one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arzhantsev, I., Popovskiy, A.: Additive actions on projective hypersurfaces, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., vol. 79, Springer, Cham, pp. 17–33 (2014)

  2. Berman, R.J.: K-polystability of \({{\mathbb{Q}}}\)-Fano varieties admitting Kähler-Einstein metrics. Invent. Math. 203(3), 973–1025 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bai, C., Fu, B., Manivel, L.: On Fano complete intersections in rational homogeneous varieties. Math. Z. 295(1–2), 289–308 (2020)

  4. Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces. II. Amer. J. Math. 81, 315–382 (1959)

    Article  MathSciNet  Google Scholar 

  5. Blum, H., Jonsson, M.: Thresholds, valuations, and K-stability. Adv. Math. 365, 107062, 57 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bourbaki, Nicolas: Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, Translated from the 1968 French original by Andrew Pressley

  7. Blum, H., Xu, C.: Uniqueness of K–polystable degenerations of Fano varieties. Ann. Math. 190(2), 609–656 (2019)

  8. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Am. Math. Soc. 28(1), 183–197 (2015)

    Article  Google Scholar 

  9. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \(2\pi \). J. Am. Math. Soc. 28(1), 199–234 (2015)

    Article  Google Scholar 

  10. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Am. Math. Soc. 28(1), 235–278 (2015)

    Article  Google Scholar 

  11. Delcroix, T.: K-stability of Fano spherical varieties. Ann. Sci. Éc. Norm. Supér. (4) 53(3), 615–662 (2020)

    Article  MathSciNet  Google Scholar 

  12. Delcroix, Thibaut: The Yau-Tian-Donaldson conjecture for cohomogeneity one manifolds, arXiv:2011.07135v1 (2020)

  13. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62(2), 289–349 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Fu, B., Hwang, J.-M.: Special birational transformations of type (2,1). J. Algebraic Geom. 27(1), 55–89 (2018)

  15. Fujita, K.: Towards a criterion for slope stability of Fano manifolds along divisors. Osaka J. Math. 52(1), 71–91 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Fujita, K.: Examples of K-unstable Fano manifolds with the Picard number 1. Proc. Edinb. Math. Soc. 60(4), 881–891 (2017)

    Article  MathSciNet  Google Scholar 

  17. Fujita, K.: A valuative criterion for uniform K-stability of \(\mathbb{Q}\)-Fano varieties. J. Reine Angew. Math. 751, 309–338 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kanemitsu, A.: Fano manifolds and stability of tangent bundles. J. Reine Angew. Math. 774, 163–183 (2021)

  19. Kuznetsov, A.G.: On linear sections of the spinor tenfold. I. Izv. Ross. Akad. Nauk Ser. Mat. 82(4), 53–114 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Li, C.: K-semistability is equivariant volume minimization. Duke Math. J. 166(16), 3147–3218 (2017)

    Article  MathSciNet  Google Scholar 

  21. Li, C.: \({\mathbb{G}}\)-uniform stability and Kähler-Einstein metrics on Fano varieties, arXiv:1907.09399v5 (2019)

  22. Li, C., Wang, X., Xu, C.: Algebraicity of the metric tangent cones and equivariant K–stability, J. Amer. Math. Soc. 34(4), 1175–1214 (2021)

  23. Li, C., Wang, X., Xu, C.: On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties. Duke Math. J. 168(8), 1387–1459 (2019)

  24. Matsushima, Y.: Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne. Nagoya Math. J. 11, 145–150 (1957)

    Article  MathSciNet  Google Scholar 

  25. Odaka, Y.: A generalization of the Ross-Thomas slope theory. Osaka J. Math. 50(1), 171–185 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Odaka, Y.: Compact moduli spaces of Kähler-Einstein Fano varieties. Publ. Res. Inst. Math. Sci. 51(3), 549–565 (2015)

    Article  MathSciNet  Google Scholar 

  27. Odaka, Y., Okada, T.: Birational superrigidity and slope stability of Fano manifolds. Math. Z. 275(3–4), 1109–1119 (2013)

    Article  MathSciNet  Google Scholar 

  28. Pasquier, B.: On some smooth projective two-orbit varieties with Picard number 1. Math. Ann. 344(4), 963–987 (2009)

    Article  MathSciNet  Google Scholar 

  29. Ross, J., Thomas, R.: A study of the Hilbert-Mumford criterion for the stability of projective varieties. J. Algebraic Geom. 16(2), 201–255 (2007)

    Article  MathSciNet  Google Scholar 

  30. Spotti, C., Sun, S., Yao, C.: Existence and deformations of Kähler-Einstein metrics on smoothable \({\mathbb{Q}}\)-Fano varieties. Duke Math. J. 165(16), 3043–3083 (2016)

    Article  MathSciNet  Google Scholar 

  31. Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)

    Article  MathSciNet  Google Scholar 

  32. Tian, G.: K-stability and Kähler-Einstein metrics. Commun. Pure Appl. Math. 68(7), 1085–1156 (2015)

    Article  Google Scholar 

  33. Wang, X.: Height and GIT weight. Math. Res. Lett. 19(4), 909–926 (2012)

    Article  MathSciNet  Google Scholar 

  34. Zhuang, Z.: Optimal destabilizing centers and equivariant K-stability, arXiv:2004.09413v2 (2020)

Download references

Acknowledgements

The author wishes to express his gratitude to Professor Thibaut Delcroix for careful reading of the first draft of this paper, and also for discussions about the difference between his proof and our proof. The author is also grateful to Professors Kento Fujita and Yuji Odaka for helpful discussions and also for answering questions on K-stability of Fano varieties. The author also would like to thank Professor Baohua Fu for drawing his attention to [3] and for explaining Remark 5.3.

Funding

The author was a JSPS Research Fellow and supported by the Grant-in-Aid for JSPS fellows (JSPS KAKENHI Grant Number 18J00681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Kanemitsu.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanemitsu, A. Kähler–Einstein metrics on Pasquier’s two-orbits varieties. manuscripta math. 169, 297–311 (2022). https://doi.org/10.1007/s00229-021-01338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01338-y

Mathematics Subject Classification

Navigation