1 Erratum to: Manuscripta Math. (2017) https://doi.org/10.1007/s00229-016-0877-4

In this note we correct a typo in the proof of the main result of [1], that is (3.10).

(3.10) should be

$$\begin{aligned} F^{1i} u_{1i} = \frac{{\partial F}}{{\partial a_{1i} }}\frac{1}{{W^2 }}u_{1i} = \frac{{\partial F}}{{\partial a_{1i} }}a_{i1} \le 0. \end{aligned}$$

The last inequality in the above fomula holds from the concavity of \(\big [\frac{\sigma _k }{\sigma _l }\big ]^{\frac{1}{k-l}}\). We can give a detailed proof as follows. Following the proof in [1], we assume \(A =\{ a_{ij} \}_{n \times n}\) with \( a_{ij} = a_{ji}\), and at \(x_0\), we have \( a_{ij} =0\) for \(2 \le i \ne j \le n\). For any \(i_0 \ge 2\), consider

$$\begin{aligned} g(t) = \big [\frac{\sigma _k (B+tC) }{\sigma _l (B+tC) }\big ]^{\frac{1}{k-l}}, \quad (-1 \le t \le 1), \end{aligned}$$

where \(B =\{ b_{ij} \}_{n \times n}\) with \( b_{1i_0} = b_{i_01} =0 \) and \( b_{ij} = a_{ij} \) otherwise, and \(C =\{c_{ij} \}_{n \times n}\) with \( c_{1i_0} = c_{i_01} = a_{i_01} \) and \( c_{ij} = 0\) otherwise. Then we have \(B+C=A\).

Since \(\sigma _1 (B + tC) = \sigma _1 (B)\) and

$$\begin{aligned} \sigma _m (B + tC) = \sigma _m (B) - t^2 a_{1i_0 } ^2 \sigma _{m-2} (B|1i_0 ) \end{aligned}$$

for \(m \ge 2\), we can get

$$\begin{aligned} \sigma _m (B + tC) =&\sigma _m (A) +(1 - t^2) a_{1i_0 } ^2 \sigma _{m-2} (B |1i_0 ) \nonumber \\ =&\sigma _m (A) +(1 - t^2) a_{1i_0 } ^2 \sigma _{m-2} (A |1i_0 ) \nonumber \\ \ge&\sigma _m (A) \end{aligned}$$
(0.1)

for \(t \in [-1, 1]\) and \(\sigma _m (B + tC) = \sigma _m (B - tC)\), which can also be obtained from

$$\begin{aligned} \left| {\begin{array}{*{20}c} {a_{11} } &{}\quad \cdots &{}\quad {ta_{1i_0 } } &{}\quad \cdots \\ \vdots &{}\quad \ddots &{}\quad {} &{}\quad {} \\ {ta_{i_0 1} } &{}\quad {} &{}\quad {a_{i_0 i_0 } } &{}\quad {} \\ \vdots &{}\quad {} &{}\quad {} &{}\quad \ddots \\ \end{array}} \right| _{m \times m} = \left| {\begin{array}{*{20}c} {a_{11} } &{}\quad \cdots &{}\quad { - ta_{1i_0 } } &{}\quad \cdots \\ \vdots &{}\quad \ddots &{}\quad {} &{}\quad {} \\ { - ta_{i_0 1} } &{}\quad {} &{}\quad {a_{i_0 i_0 } } &{}\quad {} \\ \vdots &{}\quad {} &{}\quad {} &{}\quad \ddots \\ \end{array}} \right| _{m \times m}. \end{aligned}$$

Hence we know the eigenvalues of \(B+tC\) are in the convex cone \(\Gamma _k\) for \(t \in [-1, 1]\) and \(g(-1)=g(1)\). From the concavity of \(\big [\frac{\sigma _k }{\sigma _l }\big ]^{\frac{1}{k-l}}\) in \(\Gamma _k\), we have g(t) is concave with respect to \(t \in [-1, 1]\). Hence

$$\begin{aligned} 0\ge g'(1) = \frac{1}{k-l} \big [\frac{\sigma _k (A) }{\sigma _l (A) }\big ]^{\frac{1}{k-l}-1} \big [ \frac{\partial {\frac{\sigma _k (A) }{\sigma _l (A)}}}{\partial a_{1i_0}} a_{i_0 1 }+ \frac{\partial {\frac{\sigma _k (A) }{\sigma _l (A)}}}{\partial a_{i_01}} a_{1 i_0}\big ]. \end{aligned}$$
(0.2)

Hence \(\frac{{\partial F}}{{\partial a_{1i_0} }}a_{i_01} \le 0\) for any \(i_0 \ge 2\).