

Chuanqiang Chen · Lu Xu · Dekai Zhang

Erratum to: The interior gradient estimate of prescribed Hessian quotient curvature equations

Published online: 17 August 2021

Erratum to: Manuscripta Math. (2017) https://doi.org/10.1007/s00229-016-0877-4

In this note we correct a typo in the proof of the main result of [1], that is (3.10). (3.10) should be

$$F^{1i}u_{1i} = \frac{\partial F}{\partial a_{1i}} \frac{1}{W^2} u_{1i} = \frac{\partial F}{\partial a_{1i}} a_{i1} \le 0.$$

The last inequality in the above fomula holds from the concavity of $\left[\frac{\sigma_k}{\sigma_l}\right]^{\frac{1}{k-l}}$. We can give a detailed proof as follows. Following the proof in [1], we assume $A = \{a_{ij}\}_{n \times n}$ with $a_{ij} = a_{ji}$, and at x_0 , we have $a_{ij} = 0$ for $2 \le i \ne j \le n$. For any $i_0 \geq 2$, consider

$$g(t) = \left[\frac{\sigma_k(B+tC)}{\sigma_l(B+tC)}\right]^{\frac{1}{k-l}}, \quad (-1 \le t \le 1),$$

where $B = \{b_{ij}\}_{n \times n}$ with $b_{1i_0} = b_{i_01} = 0$ and $b_{ij} = a_{ij}$ otherwise, and C = $\{c_{ij}\}_{n \times n}$ with $c_{1i_0} = c_{i_01} = a_{i_01}$ and $c_{ij} = 0$ otherwise. Then we have B + C = A.

Since $\sigma_1(B + tC) = \sigma_1(B)$ and

$$\sigma_m(B + tC) = \sigma_m(B) - t^2 a_{1i_0}^2 \sigma_{m-2}(B|1i_0)$$

for $m \ge 2$, we can get

$$\sigma_m(B+tC) = \sigma_m(A) + (1-t^2)a_{1i_0}^2\sigma_{m-2}(B|1i_0)$$

= $\sigma_m(A) + (1-t^2)a_{1i_0}^2\sigma_{m-2}(A|1i_0)$

The original article can be found online at https://doi.org/10.1007/s00229-016-0877-4.

C. Chen: Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, Zhejiang Province, China

e-mail: chuanqiangchen@zjut.edu.cn

L. Xu (🖂): School of Mathematics, Hunan University, Changsha 410082, Hunan Province, China

e-mail: xulu@hnu.edu.cn

D. Zhang: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui Province, China e-mail: dekzhang@mail.ustc.edu.cn

https://doi.org/10.1007/s00229-021-01335-1

$$\geq \sigma_m(A) \tag{0.1}$$

for $t \in [-1, 1]$ and $\sigma_m(B + tC) = \sigma_m(B - tC)$, which can also be obtained from

$$\begin{vmatrix} a_{11} & \cdots & ta_{1i_0} & \cdots \\ \vdots & \ddots & & & \\ ta_{i_01} & & a_{i_0i_0} & & \\ \vdots & & & \ddots & \\ \vdots & & & & \ddots \end{vmatrix}_{m \times m} = \begin{vmatrix} a_{11} & \cdots & -ta_{1i_0} & \cdots \\ \vdots & \ddots & & \\ -ta_{i_01} & & a_{i_0i_0} & & \\ \vdots & & & \ddots & \\ m \times m \end{vmatrix}_{m \times m}$$

Hence we know the eigenvalues of B + tC are in the convex cone Γ_k for $t \in [-1, 1]$ and g(-1) = g(1). From the concavity of $\left[\frac{\sigma_k}{\sigma_l}\right]^{\frac{1}{k-l}}$ in Γ_k , we have g(t) is concave with respect to $t \in [-1, 1]$. Hence

$$0 \ge g'(1) = \frac{1}{k-l} \Big[\frac{\sigma_k(A)}{\sigma_l(A)} \Big]^{\frac{1}{k-l}-1} \Big[\frac{\partial \frac{\sigma_k(A)}{\sigma_l(A)}}{\partial a_{1i_0}} a_{i_01} + \frac{\partial \frac{\sigma_k(A)}{\sigma_l(A)}}{\partial a_{i_01}} a_{1i_0} \Big].$$
(0.2)

Hence $\frac{\partial F}{\partial a_{1i_0}}a_{i_01} \leq 0$ for any $i_0 \geq 2$.

References

 Chen, C., Xu, L., Zhang, D.: The interior gradient estimate of prescribed Hessian quotient curvature equations. Manuscripta Math. 153(1–2), 159–171 (2017). https://doi.org/10. 1007/s00229-016-0877-4

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.