Skip to main content
Log in

Modelling ocular pharmacokinetics of fluorescein administered as lyophilisate or conventional eye drops

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

The objective of this evaluation was to model ocular pharmacokinetics of fluorescein administered as conventional eye drops and as lyophilisate to healthy volunteers in order to assess the relative bioavailability of the lyophilisate formulation.

Methods

A total of 44 healthy subjects received equivalent doses of fluorescein as lyophilisate to one eye and as eye drops to the fellow eye in three individual studies. Fluorescein concentrations in the cornea and anterior chamber were measured by fluorophotometry. Data were analyzed by noncompartmental methods (WinNonlin software) and by compartmental population pharmacokinetic methods (NONMEM software).

Results

Compared to eye drops, both maximum fluorescein concentrations (Cmax) and the areas under the concentration-time curve (AUC0-t ) values of fluorescein in the cornea and anterior chamber for lyophilisate were increased in the noncompartmental analysis: mean lyophilisate Cmax in the studies was 6.3- to 14.6-fold higher and mean AUC0–t was 4.7- to 8.9-fold higher for ocular concentrations in the three studies. A three-compartment open model with first-order elimination from the anterior chamber adequately described population data. Estimated fluorescein systemic bioavailability (F) via the ocular route from lyophilisate relative to eye drops was 3.7-fold higher (95% CI 2.6–4.8).

Conclusion

The data clearly show a considerably superior intraocular bioavailability of fluorescein when given as lyophilisate compared to conventional eye drops. There is a clear pharmacokinetic advantage of the lyophilisate preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmed I, Patton TF (1985) Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci 26(4):584–587

    PubMed  CAS  Google Scholar 

  2. Lee SB, Geroski DH, Prausnitz MR, Edelhauser HF (2004) Drug delivery through the sclera: effects of thickness, hydration, and sustained release systems. Exp Eye Res 78(3):599–607

    Article  PubMed  CAS  Google Scholar 

  3. Schoenwald RD (1990) Ocular drug delivery. Pharmacokinetic considerations. Clin Pharmacokinet 18(4):255–269

    Article  CAS  Google Scholar 

  4. Chastain JE (2003) General considerations in ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery system; drugs and the pharmaceutical sciences, 2nd edn. Marcel Dekker, New York, pp 59–107

    Google Scholar 

  5. Mishima S, Gasset A, Klyce SD Jr, Baum JL (1966) Determination of tear volume and tear flow. Invest Ophthalmol 5(3):264–276

    PubMed  CAS  Google Scholar 

  6. Davies NM (2000) Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol 27(7):558–562

    Article  PubMed  CAS  Google Scholar 

  7. Fraunfelder FT, Meyer SM (1987) Systemic side effects from ophthalmic timolol and their prevention. J Ocul Pharmacol 3(2):177–184

    PubMed  CAS  Google Scholar 

  8. Macdonald EA, Maurice DM (1991) Loss of fluorescein across the conjunctiva. Exp Eye Res 53(4):427–430

    Article  PubMed  CAS  Google Scholar 

  9. Noecker R (2001) Effects of common ophthalmic preservatives on ocular health. Adv Ther 18(5):205–215

    Article  PubMed  CAS  Google Scholar 

  10. Pisella PJ, Pouliquen P, Baudouin C (2002) Prevalence of ocular symptoms and signs with preserved and preservative free glaucoma medication. Br J Ophthalmol 86(4):418–423

    Article  PubMed  CAS  Google Scholar 

  11. Jaenen N, Baudouin C, Pouliquen P, Manni G, Figueiredo A, Zeyen T (2007) Ocular symptoms and signs with preserved and preservative-free glaucoma medications. Eur J Ophthalmol 17(3):341–349

    PubMed  CAS  Google Scholar 

  12. Noecker RJ, Herrygers LA, Anwaruddin R (2004) Corneal and conjunctival changes caused by commonly used glaucoma medications. Cornea 23(5):490–496

    Article  PubMed  Google Scholar 

  13. Maurice DM, Mishima S (1984) Ocular pharmacokinetics. In: Sears ML (ed) Pharmacology of the eye, handbook of experimental Pharmacology, vol. 69. Springer-Verlag, Berlin, pp 19–116

  14. Patton TF, Franceur M (1978) Ocular bioavailability and systemic loss of topically applied ophthalmic drugs. Am J Ophthalmol 85(2):225–229

    PubMed  CAS  Google Scholar 

  15. Chrai SS, Makoid MC, Eriksen SP, Robinson JR (1974) Drop size and initial dosing frequency problems of topically applied ophthalmic drugs. J Pharm Sci 63(3):333–338

    Article  PubMed  CAS  Google Scholar 

  16. Ahmed I (2003) The noncorneal route in ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery system; drugs and the pharmaceutical sciences, 2nd edn. Marcel Dekker, New York, pp 335–363

    Google Scholar 

  17. Macha S, Hughes PM, Mitra AK (2003) Overview of ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery system; drugs and the pharmaceutical sciences, 2nd edn. Marcel Dekker, New York, pp 1–12

    Google Scholar 

  18. Chang SC, Lee VH (1987) Nasal and conjunctival contributions to the systemic absorption of topical timolol in the pigmented rabbit: implications in the design of strategies to maximize the ratio of ocular to systemic absorption. J Ocul Pharmacol 3(2):159–169

    Article  PubMed  CAS  Google Scholar 

  19. Lee VH, Robinson JR (1986) Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol 2(1):67–108

    PubMed  CAS  Google Scholar 

  20. Lang JC (1995) Ocular drug delivery conventional ocular formulations. Adv Drug Delivery Rev 16:39–43

    Article  CAS  Google Scholar 

  21. Urtti A, Pipkin JD, Rork G, Repta AJ (1990) Controlled drug delivery devices for experimental ocular studies with timolol. 1. In vitro release studies. Int J Pharm 61:235−240

    Google Scholar 

  22. Zimmerman TJ, Kooner KS, Kandarakis AS, Ziegler LP (1984) Improving the therapeutic index of topically applied ocular drugs. Arch Ophthalmol 102:551−553

    PubMed  Google Scholar 

  23. Tang-Liu DD, Liu S, Neff J, Sandri R (1987) Disposition of levobunolol after an ophthalmic dose to rabbits. J Pharm Sci 76(10):780–783

    Article  PubMed  CAS  Google Scholar 

  24. Tang-Liu DD, Liu SS, Weinkam RJ (1984) Ocular and systemic bioavailability of ophthalmic flurbiprofen. J Pharmacokinet Biopharm 12(6):611–626

    Article  PubMed  CAS  Google Scholar 

  25. Dorigo MT, Cerin O, Fracasso G, Altafini R (1990) Cardiovascular effects of befunolol, betaxolol and timolol eye drops. Int J Clin Pharmacol Res 10(3):163–166

    PubMed  CAS  Google Scholar 

  26. Diamond J (1997) Systemic adverse effects of topical ophthalmic agents. Implications for older patiens. Drugs Aging 11:352–36

    CAS  Google Scholar 

  27. Hayreh SS, Podhajsky P, Zimmerman MB (1999) Beta-blocker eyedrops and nocturnal arterial hypotension. Am J Ophthalmol 128(3):301–309

    Article  PubMed  CAS  Google Scholar 

  28. Lee VH, Urrea PT, Smith RE, Schanzlin DJ (1985) Ocular drug bioavailability from topically applied liposomes. Surv Ophthalmol 29(5):335–348

    Article  PubMed  CAS  Google Scholar 

  29. Hathout RM, Mansour S, Mortada ND, Guinedi AS (2007) Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech 8(1):1–12

    Article  PubMed  Google Scholar 

  30. Pontes de Carvalho RA, Krausse ML, Murphree AL, Schmitt EE, Campochiaro PA, Maumenee IH (2006) Delivery from episcleral exoplants. Invest Ophthalmol Vis Sci 47(10):4532–4539

    Article  PubMed  Google Scholar 

  31. Phinney RB, Schwartz SD, Lee DA, Mondino BJ (1988) Collagen-shield delivery of gentamicin and vancomycin. Arch Ophthalmol 106(11):1599–604

    PubMed  CAS  Google Scholar 

  32. Reidy JJ, Limberg M, Kaufman HE (1990) Delivery of fluorescein to the anterior chamber using the corneal collagen shield. Ophthalmology 97(9):1201–1203

    PubMed  CAS  Google Scholar 

  33. Hornof M, Weyenberg W, Ludwig A, Bernkop-Schnurch A (2003) Mucoadhesive ocular insert based on thiolated poly(acrylic acid): development and in vivo evaluation in humans. J Control Release 89(3):419–428

    Article  PubMed  CAS  Google Scholar 

  34. Davies NM, Farr SJ, Hadgraft J, Kellaway IW (1991) Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions. Pharm Res 8(8):1039–1043

    CAS  Google Scholar 

  35. Suverkrup R, Weichselbaum A, Diestelhorst M (1999) Pilocarpine dry drops: miotic effect and discomfort upon administration compared to conventional eye drops. IOVS Supl 40(4):85

    Google Scholar 

  36. Diestelhorst M, Grunthal S, Suverkrup R (1999) Dry drops: a new preservative-free drug delivery system. Graefes Arch Clin Exp Ophthalmol 237(5):394–398

    Article  PubMed  CAS  Google Scholar 

  37. Mitra AK (2003) Ophthalmic drug delivery system; drugs and the pharmaceutical sciences, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  38. Dinslage S, Diestelhorst M, Weichselbaum A, Süverkrüp R (2002) Lyophilisates for drug delivery in ophthalmology: pharmacokinetics of fluorescein in the human anterior segment. Br J Ophthalmol 86(10):1114–1117

    Article  PubMed  CAS  Google Scholar 

  39. Lux A, Maier S, Dinslage S, Süverkrüp R, Diestelhorst M (2003) A comparative bioavailability study of three conventional eye drops versus a single lyophilisate. Br J Ophthalmol 87(4):436–440

    Article  PubMed  CAS  Google Scholar 

  40. Steinfeld A, Lux A, Maier S, Süverkrüp R, Diestelhorst M (2004) Bioavailability of fluorescein from a new drug delivery system in human eyes. Br J Ophthalmol 88(1):48–53

    Article  PubMed  CAS  Google Scholar 

  41. Süverkrüp R, Grunthal S, Krasichkova O, Maier S, Weichselbaum A, Neff B, Diestelhorst M, Dinslage S, Lux A (2004) The ophthalmic lyophilisate carrier system (OLCS): development of a novel dosage form, freeze-drying technique, and in vitro quality control tests. Eur J Pharm Biopharm 57(2):269–277

    Article  PubMed  CAS  Google Scholar 

  42. Schraermeyer U, Diestelhorst M, Bieker A, Theisohn M, Mietz H, Ustundag C, Joseph G, Krieglstein GK (1999) Morphologic proof of the toxicity of mitomycin C on the ciliary body in relation to different application methods. Graefes Arch Clin Exp Ophthalmol 237(7):593–600

    Article  PubMed  CAS  Google Scholar 

  43. Coakes RL, Brubaker RF (1979) Method of measuring aqueous humor flow and corneal endothelial permeability using a fluorophotometry nomogram. Invest Ophthalmol Vis Sci 18(3):288–302

    PubMed  CAS  Google Scholar 

  44. Mishima S (1981) Clinical pharmacokinetics of the eye:Proctor Lecture. Invest Ophthalmol Vis Sci 21(4):504–541

    PubMed  CAS  Google Scholar 

  45. Maurice DM (1967) The use of fluorescein in ophthalmological research. Invest Ophthalmol 6(5):464–477

    PubMed  CAS  Google Scholar 

  46. Adler CA, Maurice DM, Paterson ME (1971) The effect of the viscosity of the vehicle on the penetration of fluorescein into the human eye. Exp Eye Res 11(1):34–42

    Article  PubMed  CAS  Google Scholar 

  47. Linden C, Alm A (1997) Effect of consecutively applied fluorescein eye drops on corneal and aqueous concentrations of fluorescein. Ophthalmic Res 29(2):57–60

    Article  PubMed  CAS  Google Scholar 

  48. Ludwig A, van Haeringen NJ, Bodelier VM, Van Ooteghem M (1992) Relationship between precorneal retention of viscous eye drops and tear fluid composition. Int Ophthalmol 16(1):23–26

    Article  PubMed  CAS  Google Scholar 

  49. Benedetto DA, Shah DO, Kaufman HE (1975) The instilled fluid dynamics and surface chemistry of polymers in the preocular tear film. Invest Ophthalmol 14(12):887–902

    PubMed  CAS  Google Scholar 

  50. McLaren JW, Ziai N, Brubaker RF (1993) A simple three-compartment model of anterior segment kinetics. Exp Eye Res 56(3):355–366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Olena Krasichkova and Stefan Mayer for the preparation of lyophilisates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Fuhr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abduljalil, K., Diestelhorst, M., Doroshyenko, O. et al. Modelling ocular pharmacokinetics of fluorescein administered as lyophilisate or conventional eye drops. Eur J Clin Pharmacol 64, 521–529 (2008). https://doi.org/10.1007/s00228-007-0457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-007-0457-3

Keywords

Navigation