Skip to main content

Advertisement

Log in

Fatty acid profiles of separated host–symbiont fractions from five symbiotic corals: applications of chemotaxonomic and trophic biomarkers

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript
  • 2 Altmetric

Abstract

Fatty acids (FAs) are the main components of lipids in corals. We examined FAs profiles from five symbiotic coral species belonging to five different genera (Acropora, Pavona, Turbinaria, Favites, and Platygyra) and four different families (Acroporidae, Agariciidae, Dendrophyllidae, Faviidae). We separated symbionts from the coral host tissue to investigate the interaction of FA between symbionts and host tissue. After separation, we used FA profiles, in particular specific FAs (e.g. 16:0, 18:0, 18:3n-3, 20:5n-3, 22:6n-3) and their ratios (EPA:DHA, PUFA:SFA) as biomarkers (i.e. signature lipids) to examine chemotaxonomy and trophic level (autotrophy vs. heterotrophy) of each coral species. Gas chromatography–mass spectrometry (GC–MS) was performed to identify and quantify FA. For quantification, the dry weight of total lipids was used to normalize FA concentration (μg mg−1). We found that (1) the five different coral species showed define species-specific FA profiles; (2) certain FAs were valuable biomarkers to determine relative trophic strategies (i.e. autotrophy and/or heterotrophy; (3) the application of FA ratios to define trophic level requires caution in research application and data interpretation. Considering the limitations of FA ratios determined herein, we suggest it to be more appropriate to examine response to environmental change within species. Going forward, our study provides important FA baseline data that builds the foundation for future investigations on the impact of environmental changes related to nutrition and metabolism in symbiotic corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The datasets for the study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Abbreviations

TL:

Total lipids

FA:

Fatty acid

SFA:

Saturated fatty acid

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

PA:

Palmitic acid (16:0)

SA:

Stearic acid (18:0)

OA:

Oleic acid (18:1n-9)

LA:

Linoleic acid (18:2n-6)

SDA:

Stearidonic acid (18:4n-3)

EPA:

Eicosapentaenoic acid (20:5n-3)

DPA:

Docosapentaenoic acid (22:5n-3)

DHA:

Docosahexaenoic acid (22:6n-3)

ALA:

α-Linolenic acid (18:3n-3)

LA:

Linoleic acid (18:2n-6)

GLA:

γ-Linolenic acid (18:3n-6)

DGLA:

Dihomo-γ-linolenic acid (20:3n-6)

ARA:

Arachidonic acid (20:4n-6)

AdA:

Adrenic acid (22:4n-6)

References

  • Ackman RG (1999) Comparison of lipids in marine and freshwater organisms. In: Arts MT (ed) Lipids in freshwater ecosystems. Springer Science+Business Media, New York, pp 263–298

    Chapter  Google Scholar 

  • Alfaro AC, Thomas F, Sergent L, Duxbury M (2006) Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuar Coast Shelf Sci 70:271–286

    Article  Google Scholar 

  • Allan EL, Ambrose ST, Richoux NB, Froneman PW (2010) Determining spatial changes in the diet of nearshore suspension-feeders along the South African coastline: Stable isotope and fatty acid signatures. Estuar Coast Shelf Sci 87:463–471

    Article  CAS  Google Scholar 

  • Al-Lihaibi SS, Al-Sofyani AA, Niaz GR (1998) Chemical composition of corals in Saudi Red sea coast. Oceanol Acta 21:495–501

    Article  CAS  Google Scholar 

  • Al-Moghrabi S, Allemand D, Couret JM, Jaubert J (1995) Fatty acids of the scleractinian coral Galaxea fascicularis: effect of light and feeding. J Comp Physiol B 165:183–192

    Article  Google Scholar 

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    Article  CAS  PubMed  Google Scholar 

  • Arai T, Kato M, Heyward A, Ikeda Y, Iizuka T, Maruyama T (1993) Lipid composition of positively buoyant eggs of reef building corals. Coral Reefs 12:71–75

    Article  Google Scholar 

  • Arai T, Amalina R, Bachok Z (2015) Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea. Biol Res 48:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Bachok Z, Mfilinge P, Tsuchiya M (2006) Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan. Coral Reefs 25:545–554

    Article  Google Scholar 

  • Bay LK, Guerecheau A, Andreakis N, Ulstrup KE, Matz MV (2013) Gene expression signatures of energetic acclimatisation in the reef building coral Acropora millepora. PLoS ONE 8:e61736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergé JP, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv Biochem Eng Biotechnol 96:49–125

    PubMed  Google Scholar 

  • Chen HK, Song SN, Wang LH, Mayfield AB, Chen YJ, Chen WNU, Chen CS (2015) A compartmental comparison of major lipid species in a Coral-Symbiodinium endosymbiosis: evidence that the coral host regulates lipogenesis of its cytosolic lipid bodies. PLoS ONE 10:e0132519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conti-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN, Moynihan MA, Baker DM (2020) Trophic strategy and bleaching resistance in reef-building corals. Sci Adv 6:5443

    Article  CAS  Google Scholar 

  • Couturier LIE, Michel LN, Amaro T, Budge SM, da Costa E, De Troch M, Di Dato V, Fink P, Giraldo C, Le Grand F, Loaiza I, Mathieu-Resuge M, Nichols PD, Parrish CC, Sardenne F, Vagner M, Pernet F, Soudant P, Browman H (2020) State of art and best practices for fatty acid analysis in aquatic sciences. ICES J Mar Sci 77:2375–2395

    Article  Google Scholar 

  • Cripps GC, Atkinson A (2000) Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Can J Fish Aquat 57:31–37

    Article  CAS  Google Scholar 

  • Dalsgaard J, John MS, Kattner G, Muller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  • Dunn SR, Thomas MC, Nette GW, Dove SG (2012) A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within cnidarian-dinoflagellate symbiosis. PLoS ONE 7:e46801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146

    Article  CAS  PubMed  Google Scholar 

  • Falk-Petersen S, Dahl TM, Scott CL, Sargent JR, Gulliksen B, Kwasniewski S, Hop H, Millar R-M (2002) Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Mar Ecol Prog Ser 227:187–194

    Article  CAS  Google Scholar 

  • Ferrier-Pagès C, Gattuso J (1998) Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan). Microb Ecol 35:46–57

    Article  PubMed  Google Scholar 

  • Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240

    Article  Google Scholar 

  • Figueiredo J, Baird AH, Cohen MF, Flot JF, Kamiki T, Meziane T, Tsuchiya M, Yamasaki H (2012) Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae. Coral Reefs 31:613–619

    Article  Google Scholar 

  • Folch J, Lees M, Sloane Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  • Gates RD, Hoegh-Guldberg O, McFallngai MJ, Bil KY, Muscatine L (1995) Free amino acids exhibit anthozoan host factor activity - they induce the release of photosynthate from symbiotic dinoflagellates in-vitro. Proc Natl Acad Sci USA 92:7430–7434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goreau TF, Goreau NI, Yonge CM (1971) Reef corals: autotrophs or heterotrophs? Biol Bull 41:247–260

    Article  Google Scholar 

  • Graeve M, Kattner G, Hagen W (1994) Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: Experimental evidence of trophic markers. J Exp Mar Biol Ecol 182:97–110

    Article  CAS  Google Scholar 

  • Harland AD, Davies PS, Fixter LM (1992) Lipid content of some Caribbean corals in relation to depth and light. Mar Biol 113:357–361

    Article  CAS  Google Scholar 

  • Harland AD, Navarro JC, Davies PS, Fixter LM (1993) Lipids of some Caribbean and Red Sea corals: total lipid, wax esters, triglycerides and fatty acids. Mar Biol 117:113–117

    Article  CAS  Google Scholar 

  • Howell KL, Pond DW, Billett DSM, Tyler PA (2003) Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fatty-acid biomarker approach. Mar Ecol Prog Ser 255:193–206

    Article  CAS  Google Scholar 

  • Imbs AB (2013) Fatty acids and other lipids of corals: Composition, distribution, and biosynthesis. Russ J Mar Biol 39:153–168

    Article  CAS  Google Scholar 

  • Imbs AB, Demidkova DA, Latypov YY, Pham LQ (2007) Application of fatty acids for chemotaxonomy of reef-building corals. Lipids 42:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Imbs AB, Yakovleva IM, Pham LQ (2010a) Distribution of lipids and fatty acids in the zooxanthellae and host of the soft coral Sinularia sp. Fish Sci 76:375–380

    Article  CAS  Google Scholar 

  • Imbs AB, Latyshev NA, Dautova TN, Latypov YY (2010b) Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar Ecol Prog Ser 409:65–75

    Article  CAS  Google Scholar 

  • Imbs AB, Yakovleva IM, Latyshev NA, Pham LQ (2011) Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russ J Mar Biol 36:452–457

    Article  CAS  Google Scholar 

  • Imbs AB, Yakovleva IM, Dautova TN, Bui LH, Jones P (2014) Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts. Phytochemistry 101:76–82

    Article  CAS  PubMed  Google Scholar 

  • Imbs AB, Dang LP, Rybin VG, Svetashev VI (2015) Fatty acid, lipid class, and phospholipid molecular species composition of the soft coral Xenia sp. (Nha Trang Bay, the South China Sea, Vietnam). Lipids 50:575–589

    Article  CAS  PubMed  Google Scholar 

  • Imbs AB, Demidkova DA, Dautova TN (2016) Lipids and fatty acids of cold-water soft corals and hydrocorals: a comparison with tropical species and implications for coral nutrition. Mar Biol 163:1–2

    Article  CAS  Google Scholar 

  • Jónasdóttir SH (2019) Fatty acid profiles and production in aarine phytoplankton. Mar Drugs 17:151

    Article  PubMed Central  CAS  Google Scholar 

  • Joseph JD (1979) Lipid composition of marine and estuarine invertebrates: porifera and Cnidaria. Prog Lipid Res 18:1–30

    Article  CAS  PubMed  Google Scholar 

  • Ju SJ, Ko AR, Lee CR (2011) Latitudinal variation of nutritional condition and diet for copepod species, Euchaeta sp. and Pleuromamma spp., from the Northwest Pacific ocean using lipid biomarkers. Ocean Polar Res 33:349–358

    Article  CAS  Google Scholar 

  • Kelly JR, Scheibling RE, Iverson SJ, Gagnon P (2008) Fatty acid profiles in the gonads of the sea urchin Strongylocentrotus droebachiensis on natural algal diets. Mar Ecol Prog Ser 373:1–9

    Article  CAS  Google Scholar 

  • Kim T, Lee JCY, Kang D-H, Duprey NN, Leung KS, Archana A, Baker DM (2021) Modification of fatty acid profile and biosynthetic pathway in symbiotic corals under eutrophication. Sci Total Environ 771:145336

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2576

    Article  CAS  Google Scholar 

  • Latyshev NA, Naumenko NV, Svetashev VI, Latypov YY (1991) Fatty acids of reef-building corals. Mar Ecol Prog Ser 76:295–301

    Article  CAS  Google Scholar 

  • Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  • Lopes AR, Baptista M, Rosa IC, Dionísio G, Gomes-Pereira J, Paula JR, Figueiredo C, Bandarra N, Calado R, Rosa R (2016) “Gone with the wind”: Fatty acid biomarkers and chemotaxonomy of stranded pleustonic hydrozoans (Velella velella and Physalia physalis). Biochem Syst Ecol 66:297–306

    Article  CAS  Google Scholar 

  • Mansour MP, Volkman JK, Jackson AE, Blackburn SI (1999) The fatty acid and sterol composition of five marine dinoflagellates. J Phycol 35:710–720

    Article  CAS  Google Scholar 

  • Matthews JL, Oakley CA, Lutz A, Hillyer KE, Roessner U, Grossman AR, Weis VM, Davy SK (2018) Partner switching and metabolic flux in a model cnidarian-dinoflagellate symbiosis. Proc R Soc B 285:20182336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers PA (1977) Fatty acids and hydrocarbons of Caribbean corals. Third Int Coral Reef Symp 1:529–536

    CAS  Google Scholar 

  • Mies M, Güth AZ, Tenório AA, Banha TNS, Waters LG, Polito PS, Taniguchi S, Bícego MC, Sumida PYG (2018) In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers. Coral Reefs 37:677–689

    Article  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition I. δ13C of zooxanthellae and animal tissue vs depth. Mar Biol 100:185–193

    Article  Google Scholar 

  • Oku H, Yamashiro H, Onaga K (2003a) Lipid biosynthesis from [14C]-glucose in the coral Montipora digitata. Fish Sci 69:625–631

    Article  CAS  Google Scholar 

  • Oku H, Yamashiro H, Onaga K, Sakai K, Iwasaki H (2003b) Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera. Coral Reefs 22:83–85

    Article  Google Scholar 

  • Papina M, Meziane T, van Woesik R (2003) Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comp Biochem Physiol B Biochem Mol Biol 135:533–537

    Article  CAS  PubMed  Google Scholar 

  • Parrish CC (2013) Lipids in marine ecosystems. ISRN Oceanography 2013:1–16

    Article  CAS  Google Scholar 

  • Parrish CC, Budge TAASM, Helleur RJ, Hudson ED, Pulchan K, Ramos C (2000) Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. In: Wangersky P (ed) The handbook of environmental chemistry. Springer, Berlin, pp 193–223

    Google Scholar 

  • Patton JS, Burris JE (1983) Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Mar Biol 75:131–136

    Article  CAS  Google Scholar 

  • Patton JS, Abraham S, Benson AA (1977) Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar Biol 44:235–247

    Article  CAS  Google Scholar 

  • Pernet V, Gavino V, Gavino G, Anctil M (2002) Variations of lipid and fatty acid contents during the reproductive cycle of the anthozoan Renilla koellikeri. J Comp Physiol B 172:455–465

    Article  CAS  PubMed  Google Scholar 

  • Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am Nat 110:731–742

    Article  Google Scholar 

  • Radice VZ, Brett MT, Fry B, Fox MD, Hoegh-Guldberg O, Dove SG (2019) Evaluating coral trophic strategies using fatty acid composition and indices. PLoS ONE 14:e0222327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran N, Suwa Y, Urushigawa Y (1993) Distribution of phospholipid ester-linked fatty acid biomarkers for bacteria in the sedirnent of Ise Bay, Japan. Mar Chem 42:39–56

    Article  CAS  Google Scholar 

  • Revel J, Massi L, Mehiri M, Boutoute M, Mayzaud P, Capron L, Sabourault C (2016) Differential distribution of lipids in epidermis, gastrodermis and hosted Symbiodinium in the sea anemone Anemonia viridis. Comp Biochem Physiol Part A Mol Integr Physiol 191:140–151

    Article  CAS  Google Scholar 

  • Reynaud S, Martinez P, Houlbrèque F, Billy I, Allemand D, Ferrier-Pagès C (2009) Effect of light and feeding on the nitrogen isotopic composition of a zooxanthellate coral: role of nitrogen recycling. Mar Ecol Prog Ser 392:103–110

    Article  CAS  Google Scholar 

  • Rocker MM, Willis BL, Francis DS, Bay LK (2019) Temporal and spatial variation in fatty acid composition in Acropora tenuis corals along water quality gradients on the Great Barrier Reef, Australia. Coral Reefs 38:215–228

    Article  Google Scholar 

  • Salvo F, Hamoutene D, Hayes VEW, Edinger EN, Parrish CC (2017) Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses. Coral Reefs 37:157–171

    Article  Google Scholar 

  • Sardenne F, Kraffe E, Amiel A, Fouché E, Debrauwer L, Ménard F, Bodin N (2017) Biological and environmental influence on tissue fatty acid compositions in wild tropical tunas. Comp Biochem Physiol Part A Mol Integr Physiol 204:17–27

    Article  CAS  Google Scholar 

  • Scott CL, Kwasniewski S, Falk-Petersen S, Sargent JR (2002) Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters. Mar Ecol Prog Ser 235:127–134

    Article  CAS  Google Scholar 

  • Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol 127:303–317

    Article  Google Scholar 

  • Seemann J (2013) The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. J Exp Mar Biol Ecol 442:88–95

    Article  CAS  Google Scholar 

  • Seemann J, Sawall Y, Auel H, Richter C (2013) The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata. Lipids 48:275–286

    Article  CAS  PubMed  Google Scholar 

  • Shin PKS, Yip KM, Xu WZ, Wong WH, Cheung SG (2008) Fatty acid as markers to demonstrating trophic relationships among diatoms, rotifers and green-lipped mussels. J Exp Mar Biol Ecol 357:75–84

    Article  CAS  Google Scholar 

  • Stevens CJ, Deibel D, Parrish CC (2004) Species-specific differences in lipid composition and omnivory indices in Arctic copepods collected in deep water during autumn (North Water Polynya). Mar Biol 144:905–915

    Article  CAS  Google Scholar 

  • Svetashev VI, Vysotskii MV (1998) Fatty acids of Heliopora coerulea and chemotaxonomic significance of tetracosapolyenoic acids in coelenterates. Comp Biochem Physiol B Biochem Mol Biol 119B:73–75

    Article  CAS  Google Scholar 

  • Tarrant AM (2005) Endocrine-like signaling in Cnidarians: current understanding and implications for ecophysiology. Integr Comp Biol 45:201–214

    Article  CAS  PubMed  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci Aquac 11:107–184

    Article  CAS  Google Scholar 

  • Tolosa I, Treignier C, Grover R, Ferrier-Pagès C (2011) Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30:763–774

    Article  Google Scholar 

  • Treignier C, Grover R, Ferrier-Pagès C (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr 53:2702–2710

    Article  CAS  Google Scholar 

  • Treignier C, Tolosa I, Grover R, Reynaud S, Ferrier-Pagès C (2009) Carbon isotope composition of fatty acids and sterols in the scleractinian coral Turbinaria reniformis: effect of light and feeding. Limnol Oceanogr 54:1933–1940

    Article  CAS  Google Scholar 

  • Viso A-C, Marty J-C (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533

    Article  CAS  Google Scholar 

  • Volkman JK (1999) Australasian research on marine natural products: chemistry, bioactivity and ecology. Mar Freshw Res 50:761–779

    CAS  Google Scholar 

  • Wacker A, von Elert E (2001) Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82:2507–2520

    Article  Google Scholar 

  • Wang LH, Lee HH, Fang LS, Mayfield AB, Chen CS (2013) Fatty acid and phospholipid syntheses are prerequisites for the cell cycle of Symbiodinium and their endosymbiosis within sea anemones. PLoS ONE 8:e72486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward S (1995) Two patterns of energy allocation for growth, reproduction and lipid storage in the scleractinian coral Pocillopora damicornis. Coral Reefs 14:87–90

    Article  Google Scholar 

  • Whitehead LF, Douglas AE (2003) Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. J Exp Biol 206:3149–3157

    Article  CAS  PubMed  Google Scholar 

  • Wong JCY, Thompson P, Xie JY, Qiu J-W, Baker DM (2016) Symbiodinium clade C generality among common scleractinian corals in subtropical Hong Kong. Reg Stud Mar Sci 8:439–444

    Google Scholar 

  • Wooldridge SA (2014) Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host. Coral Reefs 33:15–27

    Article  Google Scholar 

  • Yahel R, Yahel G, Genin A (2004) Near-bottom depletion of zooplankton over coral reefs: I: diurnal dynamics and size distribution. Coral Reefs 24:75–85

    Article  Google Scholar 

  • Yamashiro H, Oku H, Higa H, Chinen I, Sakai K (1999) Composition of lipids, fatty acids and sterols in Okinawan corals. Comp Biochem Physiol B Biochem Mol Biol 122:397–407

    Article  Google Scholar 

  • Yamashiro H, Oku H, Onaga K (2005) Effect of bleaching on lipid content and composition of Okinawan corals. Fish Sci 71:448–453

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the editor, Prof. Christian Wild, and two anonymous reviewers for their handling of our manuscript and constructive critique on earlier versions. We are grateful for the technical support of HKU and SWIMS staff.

Funding

This study was supported by General Research Fund No. 17303615 (Research Grants Council Hong Kong).

Author information

Authors and Affiliations

Authors

Contributions

TK and DMB conceived the study and planned fieldwork. TK and JCYL conducted data analysis. TK, JCYL, and DMB wrote the manuscript with contributions of SJJ. All authors participated and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Jetty Chung-Yung Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Hard coral samples were collected and maintained under the permit No. (111) in AF GR MPA 08/9 Pt.16, delivered by the Agriculture, Fisheries and Conservation Department, Hong Kong SAR. This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Authors agree on their participation on this paper.

Consent for publication

The authors agree to be co-authors on this paper on the order submitted.

Additional information

Responsible Editor: C. Wild.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.75 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Baker, D.M., Ju, SJ. et al. Fatty acid profiles of separated host–symbiont fractions from five symbiotic corals: applications of chemotaxonomic and trophic biomarkers. Mar Biol 168, 163 (2021). https://doi.org/10.1007/s00227-021-03979-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03979-9

Keywords

Navigation