Skip to main content
Log in

Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The trophic behavior of some deep-sea Newfoundland cold-water corals was explored using fatty acid (FA) and lipid profiles. No significant effect of geographic location and/or depth was identified in lipid or FA composition. However, differences were detected between and within taxon groups in hexa- or octocoral subclasses. Phospholipids constituted the main lipid class in all groups except black-thorny corals which had less structural lipids likely due to their morphology (stiff axes) and slower growth rates. Within each subclass, major differences in the identity of dominant FAs were detected at the order level, whereas differences between species and taxon groups of the same order were mainly driven by a variation in proportions of the dominant FA. Soft corals and gorgonians (Order Alcyonacea) were close in composition and are likely relying on phytodetritus resulting from algae, macrophytes and/or foraminifera, while sea pens (Order Pennatulacea) seem to consume more diatoms and/or herbivorous zooplankton with the exception of Pennatula sp. In the hexacoral subclass, black-thorny corals (Stauropathes arctica) differed significantly from the stony-cup corals (Flabellum alabastrum); S. arctica was seemingly more carnivorous (zooplankton markers) than F. alabastrum, which appears omnivorous (phyto- and zooplankton markers). Our results suggest that deep-sea corals are not as opportunistic as expected but have some selective feeding associated with taxonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agusti S, González-Gordillo JI, Vaqué D, Estrada M, Cerezo MI, Salazar G, Gasol JM, Duarte CM (2015) Ubiquitous healthy diatoms in the deep-sea confirm deep carbon injection by the biological pump. Nat Commun 6:7608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PEMANOVA+ for PRIMER. Guide to software and statistical methods. Primer-E Ltd., Plymouth, UK

    Google Scholar 

  • Baillon S, Hamel J-F, Wareham VE, Mercier A (2014) Seasonality in reproduction of the deep-water pennatulacean coral Anthoptilum grandiflorum. Mar Biol 161:29–43

    Article  Google Scholar 

  • Baillon S, English M, Hamel JF, Mercier A (2015) Comparative biometry and isotopy of three dominant pennatulacean corals in the Northwest Atlantic. Acta Zool 97:475–493

    Article  Google Scholar 

  • Baker KD, Wareham VE, Snelgrove PV, Haedrich RL, Fifield DA, Edinger EN, Gilkinson KD (2012) Distributional patterns of deep-sea coral assemblages in three submarine canyons off Newfoundland, Canada. Mar Ecol Prog Ser 445:235–249

    Article  Google Scholar 

  • Baptista M, Lopes VM, Pimentel MS, Bandarra N, Narciso L, Marques A, Rosa R (2012) Temporal fatty acid dynamics of the octocoral Veretillum cynomorium. Comp Biochem Physiol B Biochem Mol Biol 161:178–187

    Article  CAS  PubMed  Google Scholar 

  • Budge SM, Parrish CC (1998) Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org Geochem 29:1547–1559

    Article  CAS  Google Scholar 

  • Buhl-Mortensen L, Mortensen PB (2005) Distribution and diversity of species associated with deep-sea gorgonian corals off Atlantic Canada. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Netherlands, pp 849–879

    Chapter  Google Scholar 

  • Buhl-Mortensen L, Mortensen PB, Armsworthy S, Jackson D (2007) Field observations of Flabellum spp. and laboratory study of the behavior and respiration of Flabellum alabastrum. Bull Mar Sci 81:543–552

    Google Scholar 

  • Buhl-Mortensen P, Buhl-Mortensen L, Purser A (2015a) Trophic ecology and habitat provision in cold-water coral ecosystems. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Netherlands, pp 1–26

    Google Scholar 

  • Buhl-Mortensen L, Olafsdottir SH, Buhl-Mortensen P, Burgos JM, Ragnarsson SA (2015b) Distribution of nine cold-water coral species (Scleractinia and Gorgonacea) in the cold temperate North Atlantic: effects of bathymetry and hydrography. Hydrobiologia 759:39–61

    Article  CAS  Google Scholar 

  • Buhl-Mortensen L, Ellingsen KE, Buhl-Mortensen P, Skaar KL, Gonzalez-Mirelis G (2016) Trawling disturbance on megabenthos and sediment in the Barents Sea: chronic effects on density, diversity, and composition. ICES J Mar Sci 73:i98–i114

    Article  Google Scholar 

  • Chang KJL, Dunstan GA, Abell GC, Clementson LA, Blackburn SI, Nichols PD, Koutoulis A (2012) Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93:2215–2231

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2015) Primer. Primer-e Ltd., Plymouth, UK

    Google Scholar 

  • Cripps GC, Atkinson A (2000) Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 57:31–37

    Article  CAS  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Dr Müller-Navarra, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  • Dodds L, Black K, Orr H, Roberts J (2009) Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar Ecol Prog Ser 397:113–124

    Article  CAS  Google Scholar 

  • Dullo WC, Flögel S, Rüggeberg A (2008) Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar Ecol Prog Ser 371:165–176

    Article  Google Scholar 

  • Edinger EN, Wareham VE, Haedrich RL (2007) Patterns of groundfish diversity and abundance in relation to deep-sea coral distributions in Newfoundland and Labrador waters. Bull Mar Sci 81:101–122

    Google Scholar 

  • Gilkinson KD, Edinger E (2009) The ecology of deep-sea corals of Newfoundland and Labrador waters: biogeography, life history, biogeochemistry, and relation to fishes. Canadian Technical Report of Fisheries and Aquatic Science, vol. 2830, Fisheries and Oceans Canada, St Johns, NL

  • Graeve M, Kattner G, Hagen W (1994) Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: experimental evidence of trophic markers. J Exp Mar Bio Ecol 182:97–110

    Article  CAS  Google Scholar 

  • Graeve M, Kattner G, Piepenburg D (1997) Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53–61

    Article  Google Scholar 

  • Graeve M, Kattner G, Wiencke C, Karsten U (2002) Fatty acid composition of Arctic and Antarctic macroalgae: indicators for phylogenetic and trophic relationships. Mar Ecol Prog Ser 231:67–74

    Article  CAS  Google Scholar 

  • Grottoli A, Rodrigues L, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol 145:621–631

    Article  CAS  Google Scholar 

  • Hamoutene D, Puestow T, Miller-Banoub J, Wareham V (2008) Main lipid classes in some species of deep-sea corals in the Newfoundland and Labrador region (Northwest Atlantic Ocean). Coral Reefs 27:237–246

    Article  Google Scholar 

  • Harland AD, Navarro JC, Spencer Davies P, Fixter LM (1993) Lipids of some Caribbean and Red Sea corals: total lipid, wax esters, triglycerides and fatty acids. Mar Biol 117:113–117

    Article  CAS  Google Scholar 

  • Huvenne V, Bett B, Masson D, Le Bas T, Wheeler A (2016) Effectiveness of a deep-sea cold-water coral marine protected area, following eight years of fisheries closure. Biol Conserv 200:60–69

    Article  Google Scholar 

  • Iken K, Brey T, Wand U, Voigt J, Junghans P (2001) Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog Oceanogr 50:383–405

    Article  Google Scholar 

  • Imbs AB, Dautova TN (2008) Use of lipids for chemotaxonomy of octocorals (Cnidaria: Alcyonaria). Russ J Mar Biol 34:174–178

    Article  CAS  Google Scholar 

  • Imbs AB, Demidkova DA, Dautova TN (2016) Lipids and fatty acids of cold-water soft corals and hydrocorals: a comparison with tropical species and implications for coral nutrition. Mar Biol 163:1–12

    Article  CAS  Google Scholar 

  • Imbs AB, Latyshev NA, Dautova TN, Latypov YY (2010) Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar Ecol Prog Ser 409:65–75

    Article  CAS  Google Scholar 

  • Jordán F, Scheuring I (2004) Network ecology: topological constraints on ecosystem dynamics. Phys Life Rev 1:139–172

    Article  Google Scholar 

  • Kaur G, Cameron-Smith D, Garg M, Sinclair AJ (2011) Docosapentaenoic acid (22:5n-3): a review of its biological effects. Prog Lipid Res 50:28–34

    Article  CAS  PubMed  Google Scholar 

  • Kiriakoulakis K, Fisher E, Wolff GA, Freiwald A, Grehan A, Roberts JM (2005) Lipids and nitrogen isotopes of two deep-water corals from the north-east Atlantic: initial results and implications for their nutrition. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Netherlands, pp 715–729

    Chapter  Google Scholar 

  • Lacharité M, Metaxas A (2013) Early life history of deep-water gorgonian corals may limit their abundance. PLoS One 8:e65394

    Article  PubMed  PubMed Central  Google Scholar 

  • Latyshev N, Naumenko N, Svetashev V, Latypov YY (1991) Fatty acids of reef-building corals. Mar Ecol Prog Ser 76:295–301

    Article  CAS  Google Scholar 

  • Molodtsova TN (2006) Black corals (Antipatharia: Anthozoa: Cnidaria) of the north-eastern Atlantic. In: Mironov AN, Gebruk AV, Southward AJ (eds) Biogeography of the Atlantic seamounts. KMK Scientific Press, Moscow, pp 141–151

    Google Scholar 

  • Monroig Ó, Tocher DR, Navarro JC (2013) Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Mar Drugs 11:3998–4018

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortensen PB, Buhl-Mortensen L (2004) Distribution of deep-water gorgonian corals in relation to benthic habitat features in the Northeast Channel (Atlantic Canada). Mar Biol 144:1223–1238

    Article  Google Scholar 

  • Mortensen PB, Buhl-Mortensen L (2005) Morphology and growth of the deep-water gorgonians Primnoa resedaeformis and Paragorgia arborea. Mar Biol 147:775–788

    Article  Google Scholar 

  • Mortensen PB, Hovland T, Fosså JH, Furevik DM (2001) Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Assoc UK 81:581–597

    Article  Google Scholar 

  • Mueller C, Larsson AI, Veuger B, Middelburg J, van Oevelen D (2014) Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11:123–133

    Article  Google Scholar 

  • Naumann MS, Orejas C, Wild C, Ferrier-Pagès C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576

    Article  CAS  PubMed  Google Scholar 

  • Neves BdeM (2016) Growth in cold-water octocorals: rates, morphology and environmental controls. PhD thesis, Memorial University, St Johns, NL, p 433

  • Neves BdeM, Edinger E, Layne GD, Wareham VE (2015) Decadal longevity and slow growth rates in the deep-water sea pen Halipteris finmarchica (Sars, 1851) (Octocorallia: Pennatulacea): implications for vulnerability and recovery from anthropogenic disturbance. Hydrobiologia 759:147–170

    Article  CAS  Google Scholar 

  • Oku H, Yamashiro H, Onaga K, Iwasaki H, Takara K (2002) Lipid distribution in branching coral Montipora digitata. Fish Sci 68:517–522

    Article  CAS  Google Scholar 

  • Parrish CC (1987) Separation of aquatic lipid classes by chromarod thin-layer chromatography with measurement by latroscan flame ionization detection. Can J Fish Aquat Sci 44:722–731

    Article  CAS  Google Scholar 

  • Parrish CC (1999) Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts MT, Wainmann BC (eds) Lipids in freshwater ecosystems. Springer, New York, pp 4–20

    Chapter  Google Scholar 

  • Parrish CC, Thompson RJ, Deibel D (2005) Lipid classes and fatty acids in plankton and settling matter during the spring bloom in a cold ocean coastal environment. Mar Ecol Prog Ser 286:57–68

    Article  CAS  Google Scholar 

  • Radice VZ, Quattrini AM, Wareham VE, Edinger EN, Cordes EE (2016) Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea. Deep Sea Res Part 1 Oceanogr Res Pap 116:253–263

    Article  CAS  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB, Fallon SJ, Mucciarone DA (2009) Extreme longevity in proteinaceous deep-sea corals. Proc Natl Acad Sci U S A 106:5204–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  PubMed  Google Scholar 

  • Sherwood OA, Edinger EN (2009) Ages and growth rates of some deep-sea gorgonian and antipatharian corals of Newfoundland and Labrador. Can J Fish Aquat Sci 66:142–152

    Article  Google Scholar 

  • Sherwood OA, Jamieson RE, Edinger EN, Wareham VE (2008) Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: Examination of trophic, depth and spatial effects. Deep Sea Res Part 1 Oceanogr Res Pap 55:1392–1402

    Article  CAS  Google Scholar 

  • Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486:219–231

    Article  CAS  PubMed  Google Scholar 

  • Suhr SB, Pond DW, Gooday AJ, Smith CR (2003) Selective feeding by benthic foraminifera on phytodetritus on the western Antarctic Peninsula shelf: evidence from fatty acid biomarker analysis. Mar Ecol Prog Ser 262:153–162

    Article  Google Scholar 

  • Wareham VE, Edinger EN (2007) Distribution of deep-sea corals in the Newfoundland and Labrador region, Northwest Atlantic Ocean. Bull Mar Sci 81:289–313

    Google Scholar 

  • Würzberg L, Peters J, Brandt A (2011a) Fatty acid patterns of Southern Ocean shelf and deep-sea peracarid crustaceans and a possible food source, foraminiferans. Deep Sea Res Part 2 Top Stud Oceanogr 58:2027–2035

    Article  Google Scholar 

  • Würzberg L, Peters J, Schüller M, Brandt A (2011b) Diet insights of deep-sea polychaetes derived from fatty acid analyses. Deep Sea Res Part 2 Top Stud Oceanogr 58:153–162

    Article  Google Scholar 

  • Zedel L, Fowler WA (2009) Comparison of boundary layer current profiles in locations with and without corals in Haddock Channels, Southwest Grand Banks. In: Gilkinson KD, Edinger E (2009) The ecology of deep-sea corals of Newfoundland and Labrador waters: biogeography, life history, biogeochemistry, and relation to fishes. Canadian Technical Report of Fisheries and Aquatic Science, vol. 2830, Fisheries and Oceans Canada, St Johns, NL, pp 97–104

Download references

Acknowledgements

This project was funded by International Governance Program fund. We would like to thank Jeannette Wells from CREAIT laboratory for lipid classes and fatty acid analyses and Barbara Neves for completing the map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora Salvo.

Additional information

Communicated by Biology Editor Dr. Mark J. A. Vermeij

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvo, F., Hamoutene, D., Hayes, V.E.W. et al. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses. Coral Reefs 37, 157–171 (2018). https://doi.org/10.1007/s00338-017-1644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1644-z

Keywords

Navigation