Skip to main content
Log in

In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Many species of reef-building corals are mixotrophic, relying on both photoautotrophy performed by their dinoflagellate symbionts and heterotrophy from consumption of zooplankton. Autotrophy and heterotrophy supply corals with specific ω3 fatty acids, which can be used as trophic markers and record the contribution of each feeding strategy. This study investigated whether the reef-building coral Mussismilia hispida, endemic to Brazil, is able to shift between predominantly autotrophic and predominantly heterotrophic by monitoring the concentration of fatty acids in the host tissue. We then examined whether shifts are related to changes in temperature and wind stress. For that purpose, M. hispida colonies were monitored for a year with monthly tissue sampling. Symbiont concentration was determined and lipid extraction performed. Four fatty acids were quantitatively analyzed by gas chromatography with flame ionization detector: the autotrophy markers: stearidonic acid (SDA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and a heterotrophy marker: cis-gondoic acid (CGA). Three preliminary experiments confirmed the specificity of SDA, DPA and CGA, but not of DHA. Shifts of predominance occurred multiple times during the year and were associated with minimal temperatures and wind stress. Colonies underwent mild bleaching during summer months, which they seemed to compensate with heterotrophic feeding. Our major findings include the validation of three FATM and a trophic index for coral reef ecology studies and also describing the in situ occurrences of shifts between feeding modes, while highlighting the role of temperature and meteorological events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology 252:221–253

    Article  PubMed  CAS  Google Scholar 

  • Anthony KRN, Hoogenboom MO, Maynard JA, Grottoli AG, Middlebrook R (2009) Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Functional Ecology 23:539–550

    Article  Google Scholar 

  • Battey JF, Patton JS (1986) Glycerol translocation in Condylactis gigantea. Marine Biology 95:37–46

    Article  Google Scholar 

  • Bishop DG, Kenrick JR (1980) Fatty acid composition of symbiotic zooxanthellae in relation to their hosts. Lipids 15:799–804

    Article  PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Budge SM, Iverson SJ, Koopman HN (2006) Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Marine Mammal Science 22:759–801

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate 17:88–108

    Article  Google Scholar 

  • Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bulletin of Marine Science 69:357–371

    Google Scholar 

  • Clark KB, Jensen KR (1982) Effects of temperature on carbon fixation and carbon budget partitioning in the zooxanthellal symbiosis of Aiptasia pallida (Verrill). Journal of Experimental Marine Biology and Ecology 64:215–230

    Article  Google Scholar 

  • Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907

    Article  Google Scholar 

  • Conlan JA, Rocker MM, Francis DS (2017) A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences. PeerJ, e3645

  • Connell JH (1997) Disturbance and recovery of coral assemblages. Coral Reefs 16:S101–S113

    Article  Google Scholar 

  • Connolly SR, Lopez-Yglesias MA, Anthony KRN (2012) Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31:951–960

    Article  Google Scholar 

  • Costa CF, Sassi R, Gorlach-Lira K (2013) Diversity and seasonal fluctuations of microsymbionts associated with some scleractinian corals of the Picãozinho reefs of Paraíba State, Brazil. Pan-American Journal of Aquatic Sciences 8:240–252

    Google Scholar 

  • Crabbe MJC, Walker ELL, Stephenson DB (2008) The impact of weather and climate extremes on coral growth. In: Diaz H, Murnane R (eds) Climate Extremes and Society. Cambridge University Press, Cambridge, pp 165–188

    Chapter  Google Scholar 

  • Crossland CJ, Barnes DJ, Borowitzka MA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Marine Biology 60:81–90

    Article  CAS  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46:225–340

    Article  PubMed  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Berchtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of The Royal Meteorological Society 137:553–597

    Article  Google Scholar 

  • Dewick PM (2002) The biosynthesis of C5-C25 terpenoid compounds. Natural Product Reports 14:111–144

    Article  Google Scholar 

  • Diaz JM, Hansel CM, Apprill A, Brighi C, Zhang T, Weber L, McNally S, Xun L (2016) Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event. Nature Communications 7:13801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dodds LA, Black KD, Roberts JM (2009) Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Marine Ecology Progress Series 397:113–124

    Article  CAS  Google Scholar 

  • Ezzat L, Towle E, Irisson JO, Langdon C, Ferrier-Pagès C (2016) The relationship between heterotrophic feeding and inorganic nutrient availability in the scleractinian coral T. reniformis under a short-term temperature increase. Limonology and Oceanography 61:89–102

    Article  CAS  Google Scholar 

  • Fabricius KE, Dommisse M (2000) Depletion of suspended particulate matter over coastal reef communities dominated by zooxanthellate soft corals. Marine Ecology Progress Series 196:157–167

    Article  CAS  Google Scholar 

  • Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240

    Article  Google Scholar 

  • Ferrier-Pagès C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynaud S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnology and Oceanography 56:1429–1438

    Article  Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. Journal of Experimental Biology 203:3445–3457

    PubMed  CAS  Google Scholar 

  • Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8:181–191

    Article  Google Scholar 

  • Grottoli AG, Wellington GM (1999) Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs 18:29–41

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  PubMed  CAS  Google Scholar 

  • Hixon MA, Menge BA (1991) Species diversity: prey refuges modify the interactive effects of predation and competition. Theoretical Population Biology 39:178–200

    Article  Google Scholar 

  • Hoogenboom M, Rodolfo-Metalpa R, Ferrier-Pagès C (2010) Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. Journal of Experimental Biology 213:2399–2409

    Article  PubMed  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biological Reviews 84:1–17

    Article  PubMed  Google Scholar 

  • Houlbrèque F, Tambutté E, Ferrier-Pagès C (2003) Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. Journal of Experimental Biology 296:145–166

    Article  Google Scholar 

  • Hughes AD, Grottoli AG (2013) Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS ONE 8(11):e81172

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal MC, Nejstgaard JC, Calado R, Thompson ME, Frischer ME (2014) Molecular assessment of heterotrophy and prey digestion in zooxanthellate cnidarians. Molecular Ecology 23:3838–3848

    Article  PubMed  CAS  Google Scholar 

  • Leão ZMAN, Kikuchi RKP, Ferreira BP, Neves EG, Sovierzoski HH, Oliveira MDM, Maida M, Correia MD, Johnsson R (2016) Brazilian coral reefs in a period of global change: a synthesis. Brazilian Journal of Oceanography 64:97–116

    Article  Google Scholar 

  • Levas S, Grottoli AG, Schoepf V, Aschaffenburg M, Baumann J, Bauer JE, Warner ME (2016) Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals? Coral Reefs 35:495–506

    Article  Google Scholar 

  • Lewis JB (1992) Heterotrophy in corals: zooplankton predation by the hydrocoral Millepora complanata. Marine Ecology Progress Series 90:251–256

    Article  Google Scholar 

  • Lima KC, Satyamurty P, Fernández JPR (2010) Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil. Theoretical and Applied Climatology 101:121–135

    Article  Google Scholar 

  • Lorenzzetti JA, Stech JL, Mello Filho WL, Assireu AT (2009) Satellite observation of Brazil Current inshore thermal fronts in the SW Atlantic: space/time variability and sea surface temperatures. Continental Shelf Research 29:2061–2068

    Article  Google Scholar 

  • Mies M, Chaves-Filho AB, Miyamoto S, Güth AZ, Tenório AA, Castro CB, Pires DO, Calderon EN, Sumida PYG (2017) Production of three symbiosis-related fatty acids by Symbiodinium types in clades A-F associated with marine invertebrate larvae. Coral Reefs 36:1319–1328

    Article  Google Scholar 

  • Montgomery RS, Strong AE (1994) Coral bleaching threatens oceans, life. Eos, Transactions, American Geophysical Union 75:145–147

    Article  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in coral reefs. In: Dubinsky Z (ed) Ecosystems of the World. Elsevier, Amsterdam, pp 75–87

    Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnology and Oceanography 26:601–611

    Article  CAS  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27:454–460

    Article  Google Scholar 

  • Oigman-Pszczol SS, Creed JC (2004) Size structure and spatial distribution of the corals Mussismilia hispida and Siderastrea stellata (Scleractinia) at Armação dos Búzios, Brazil. Bulletin of Marine Science 74:433–448

    Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Marine Ecology Progress Series 300:79–89

    Article  Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2006) Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. Journal of Experimental Marine Biology and Ecology 331:99–107

    Article  Google Scholar 

  • Papina M, Meziane T, van Woesik R (2003) Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology 135:533–537

    Article  PubMed  CAS  Google Scholar 

  • Peluso L, Tascheri V, Nunes FLD, Castro CB, Pires DO, Zilberberg C (2018) Contemporary and historical oceanographic processes explain genetic connectivity in a Southwestern Atlantic coral. Scientific Reports 8:2684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. The American Naturalist 110:731–742

    Article  Google Scholar 

  • Roder C, Fillinger L, Jantzen C, Schmidt GM, Khokiattiwong S, Richter C (2010) Trophic response of corals to large amplitude internal waves. Marine Ecology Progress Series 412:113–128

    Article  CAS  Google Scholar 

  • Roth M (2014) The engine of the reef: photobiology of the coral-algal symbiosis. Frontiers in Microbiology 5:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruess L, Tiunov A, Haubert D, Richnow HH, Häggblom MM, Scheu S (2005) Carbon stable isotope fractionation and trophic transfer of fatty acids in fungal based soil food chains. Soil Biology and Biochemistry 37:945–953

    Article  CAS  Google Scholar 

  • Sargent JR, Bell MV, Henderson RJ, Tocher DR (1990) Polyunsaturated fatty acids in marine and terrestrial food webs. In: Mellinger J. (ed) Animal Nutrition and Transport Processes. 1. Nutrition in Wild and Domestic Animals, Comparative Physiology. Karger, Basel, Switzerland, pp 11–23

  • Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Marine Biology 127:303–317

    Article  Google Scholar 

  • Seemann J, Sawall Y, Auel H, Richter C (2013) The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata. Lipids 48:275–286

    Article  PubMed  CAS  Google Scholar 

  • Sheppard CR, Davy SK, Pilling GM (2009) The Biology of Coral Reefs. Oxford University Press, Oxford

    Book  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts-symbiosis, diversity, and the effect of climate change. Perspectives in Plant Ecology, Evolution and Systematics 8:23–43

    Article  Google Scholar 

  • Teece MA, Estes B, Gelsleichter E, Lirman D (2011) Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnology and Oceanography 56:1285–1296

    Article  CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. Journal of Experimental Marine Biology and Ecology 263:211–225

    Article  Google Scholar 

  • Tomascik T, Sander F (1985) Effects of eutrophication on reef-building corals 1. Growth rate of the reef-building coral Montastrea annularis. Marine Biology 87:143–156

    Article  Google Scholar 

  • Treignier C, Grover R, Ferrier-Pagès C, Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limonology and Oceanography 53:2702–2710

    Article  CAS  Google Scholar 

  • Tremblay P, Gori A, Maguer JF, Hoogenboom M, Ferrier-Pagès C (2016) Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Scientific Reports 6:38112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. Journal of Experimental Botany 59:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 128:219–240

    Article  CAS  Google Scholar 

  • Vytopil E, Willis B (2001) Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity. Coral Reefs 20:281–288

    Article  Google Scholar 

  • Zhukova NV, Titlyanov EA (2003) Fatty acid variations in symbiotic dinoflagellates from Okinawan corals. Phytochemistry 62:191–195

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Romina Barbosa and Jonas Mendes for their kind contributions to the manuscript and experiments. We also thank the support from the marine station Clarimundo de Jesus and the kind and valuable assistance from their technicians in the field work. PYGS acknowledges CNPq research productivity Grant 301089/2016-7 and FAPESP/PFPMCG Grant 2010/20350-8. PSP acknowledges FAPESP Grant 2008/54208-0.

Author information

Authors and Affiliations

Authors

Contributions

MM, AZG, AAT and PYGS designed the experiment; AAT performed the experiment; LGW, ST, MCB and PYGS contributed to infrastructure/material/technical support; MM, AZG, AAT, TNSB, LGW and PSP analyzed the data; and MM, AZG, TNSB, LGW, PSP and PYGS wrote the manuscript.

Corresponding author

Correspondence to M. Mies.

Ethics declarations

Conflict of interest

On behalf of the authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Dr. Mark R. Patterson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mies, M., Güth, A.Z., Tenório, A.A. et al. In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers. Coral Reefs 37, 677–689 (2018). https://doi.org/10.1007/s00338-018-1692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-018-1692-z

Keywords

Navigation