Skip to main content

Advertisement

Log in

Increased seawater temperature and light during early springs accelerate receptacle growth of Fucus vesiculosus in the northern Baltic proper

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In many temperate estuarine areas, ongoing climatic changes are expected to lead to higher seawater temperatures, to increased inflow of freshwater and nutrients (due to increased rainfall) and to altered light conditions. During the last two decades, several winters have been unusually mild in southern Finland, and the subsequent springs have been early. This may have consequences for the seasonality of many species, including the bladder-wrack, Fucus vesiculosus, whose reproductive cycle may be especially sensitive. In the present study, F. vesiculosus receptacles from the field were weighed regularly during three warm (early) springs and compared with receptacles from three cold (late) springs. On average, the first sign of receptacle growth in the field occurred 5–6 weeks earlier and receptacles probably matured 2–3 weeks earlier during the warm springs than during the cold springs. This may be due to differences in seawater temperatures among years, but significantly heavier receptacles at 0.8 m compared to at 3.1 m further suggests the importance of light for receptacle growth as a measure of maturation, since there were no depth-related differences in seawater temperatures. Also, when plotting receptacle wet weights against seawater temperatures, the importance of light can be seen as different regression relationships (slopes and intercepts). In an outdoor aquarium experiment, the effects of temperature and light on receptacle growth were also tested, and there were significant differences between shallow and deep specimens, but temperature and light had no effects, except on initial receptacle growth. Since oogonian development, and thereby the time for zygote release, followed the receptacle growth curve, this could mean a mismatch between the timing of F. vesiculosus zygote settlement and the cover of competing filamentous algae, but such species interactions require further investigations in order to better understand their possible consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersson S, Kautsky L, Kalvas A (1994) Circadian and lunar gamete release in Fucus vesiculosus in the atidal Baltic Sea. Mar Ecol Prog Ser 110:195–201

    Article  Google Scholar 

  • Bäck S, Collins JC, Russell G (1991) Aspects of the reproductive biology of Fucus vesiculosus from the coast of SW Finland. Ophelia 34:129–141

    Article  Google Scholar 

  • BACC Author Team (2008) Assessment of climate change for the Baltic Sea basin. Regional climate studies. Springer, pp. 1–474

  • Bart D (2006) Integrating local ecological knowledge and manipulative experiments to find the causes of environmental change. Front Ecol Environ 4:541–546

    Article  Google Scholar 

  • Berger R, Malm T, Kautsky L (2001) Two reproductive strategies in Baltic Fucus vesiculosus (Phaeophyceae). Eur J Phycol 36:265–273

    Article  Google Scholar 

  • Berger R, Henriksson E, Kautsky L, Malm T (2003) Effects of filamentous algae and deposited matter on the survival of Fucus vesiculosus L. germlings in the Baltic Sea. Aquat Ecol 37:1–11

    Article  Google Scholar 

  • Berger R, Bergström L, Granéli E, Kautsky L (2004) How does eutrophication affect different life stages of Fucus vesiculosus in the Baltic Sea? A conceptual model. Hydrobiologia 514:243–248

    Article  Google Scholar 

  • Breeman AM, Guiry MD (1989) Tidal influences on the photoperiodic induction of tetrasporogenesis in Bonnemaisonia hamifera (Rhodophyta). Mar Biol 102:5–14

    Article  Google Scholar 

  • Carlson L (1991) Seasonal variation in growth, reproduction and nitrogen content of Fucus vesiculosus L. in the Öresund, Southern Sweden. Bot Mar 34:447–453

    Article  Google Scholar 

  • Coleman MA, Brawley SH (2005) Variability in temperature and historical patterns in reproduction in the Fucus distichus complex (Heterokontophyta; Phaeophyceae): implications for speciation and the collection of herbarium specimens. J Phycol 41:1110–1119

    Article  Google Scholar 

  • Cunningham EM, Guiry MD, Breeman AM (1993) Environmental regulation of development, life history and biogeography of Helminthora stackhousei (Rhodophyta) by daylength and temperature. J Exp Mar Biol Ecol 171:1–21

    Article  Google Scholar 

  • Dakos V, Scheffer M, van Nes EH, Brovkin V, Petoukhov V, Held H (2008) Slowing down as an early warning signal for abrupt climate change. Proc Natl Acad Sci USA 105:14308–14312

    Article  CAS  Google Scholar 

  • Díaz E, Kraufvelin P, Erlandsson J (2012) Combining gut fluorescence technique and spatial analysis to determine Littorina littorea grazing dynamics in nutrient-enriched and nutrient-unenriched littoral mesocosms. Mar Biol 159:837–852

    Article  Google Scholar 

  • Granskog M, Kaartokallio H, Kuosa H, Thomas DN, Vainio J (2006) Sea ice in the Baltic Sea: a review. Estuar Coast Shelf Sci 70:145–160

    Article  Google Scholar 

  • Guénette S, Heymans SJJ, Christensen V, Trites A (2006) Ecosystem models show combined effects of fishing, predation, competition, and ocean productivity on Steller sea lions (Eumetopias jubatus) in Alaska. Can J Fish Aquat Sci 63:2495–2517

    Article  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KR, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  Google Scholar 

  • Hawkins SJ, Sugden HE, Mieszkowska N, Moore PJ, Poloczanska E, Leaper R, Herbert RJH, Genner MJ, Moschella PS, Thompson RC, Jenkins SR, Southward AJ, Burrows MT (2009) Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores. Mar Ecol Prog Ser 396:245–259

    Article  Google Scholar 

  • Houghton J (2005) Global warming. Rep Prog Phys 68:1343–1403

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  Google Scholar 

  • Isæus M, Rygg B (2005) Wave exposure calculations for the Finnish coast. NIVA Rapport LNR 5075-2005, pp 24

  • Kalvas A, Kautsky L (1993) Geographical variation in Fucus vesiculosus morphology in the Baltic and North Seas. Eur J Phycol 28:85–91

    Article  Google Scholar 

  • Kautsky H, Kautsky L, Kautsky N, Kautsky U, Lindblad C (1992) Studies on the Fucus vesiculosus community in the Baltic Sea. Acta Phytogeogr Suec 78:33–48

    Google Scholar 

  • Kiirikki M, Lehvo A (1997) Life strategies of filamentous algae in the northern Baltic proper. Sarsia 82:259–267

    Google Scholar 

  • Kiirikki M, Ruuskanen A (1996) How does Fucus vesiculosus survive ice scraping? Bot Mar 39:133–139

    Article  Google Scholar 

  • Korpinen S, Honkanen T, Vesakoski O, Hemmi A, Koivikko R, Loponen J, Jormalainen V (2007) Macroalgal communities face the challenge of changing biotic interactions: review with focus on the Baltic Sea. Ambio 36:203–211

    Article  Google Scholar 

  • Kraufvelin P (2007) Responses to nutrient enrichment, wave action and disturbance in rocky shore communities. Aquat Bot 87:262–274

    Article  CAS  Google Scholar 

  • Kraufvelin P, Salovius S (2004) Animal diversity in Baltic rocky shore macroalgae: can Cladophora glomerata compensate for lost Fucus vesiculosus? Estuar Coast Shelf Sci 61:369–378

    Article  Google Scholar 

  • Kraufvelin P, Moy FE, Christie H, Bokn TL (2006) Nutrient addition to experimental rocky shore communities revisited: delayed responses, rapid recovery. Ecosystems 9:1076–1093

    Article  CAS  Google Scholar 

  • Kraufvelin P, Ruuskanen AT, Nappu N, Kiirikki M (2007) Winter colonisation and succession of filamentous algae and possible relationships to Fucus vesiculosus settlement in early summer. Estuar Coast Shelf S 72:665–674

    Article  Google Scholar 

  • Kraufvelin P, Lindholm A, Pedersen MF, Kirkerud LA, Bonsdorff E (2010) Biomass, diversity and production of rocky shore macroalgae at two nutrient enrichment av wave action levels. Mar Biol 157:29–47

    Article  Google Scholar 

  • Kullenberg G, Jacobsen TS (1981) The Baltic Sea: an outline of its physical oceanography. Mar Pollut Bull 12:183–186

    Article  Google Scholar 

  • Lehvo A, Bäck S, Kiirikki M (2000) Growth of Fucus vesiculosus L. (Phaeophyta) in the Northern Baltic Proper: energy and nitrogen storage in seasonal environment. Bot Mar 44:345–350

    Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793

    Article  CAS  Google Scholar 

  • Lindström M (2001) Seasonal changes in the underwater light milieu in a Finnish Baltic Sea coastal locality. Geophysica 36:215–232

    Google Scholar 

  • Lloret J, Marin A, Mari-Guirao L (2008) Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuar Coast Shelf S 78:403–412

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    Article  CAS  Google Scholar 

  • Luder UH, Knoetzel J, Wiencke C (2001) Acclimation of photosynthesis and pigments to seasonally changing light conditions in the endemic Antarctic red macroalga Palmaria decipiens. Pol Biol 24:598–603

    Article  Google Scholar 

  • Lüning K, Kadel P (1993) Daylength range for circannual rhythmicity in Pterygophora californica (Alariaceae, Phaeophyta) and synchronization of seasonal growth by daylength cycles in several other brown algae. Phycologia 32:379–387

    Article  Google Scholar 

  • Machalek KM, Davison IR, Falkowski PG (1996) Thermal acclimation and photoacclimation of photosynthesis in the brown alga Laminaria saccharina. Plant Cell Environ 19:1005–1016

    Article  CAS  Google Scholar 

  • Mälkki P, Tamsalu R (1985) Physical features of the Baltic Sea. Finn Mar Res 252:1–110

    Google Scholar 

  • Miller SM, Wing SR, Hurd CL (2006) Photoacclimation of Ecklonia radiata (Laminariales, Heterokontophyta) in Doubtful Sound, Fjordland, Southern New Zealand. Phycologia 45:44–52

    Article  Google Scholar 

  • Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14

    Article  Google Scholar 

  • Pimm SL (2009) Climate disruption and biodiversity. Curr Biol 19:R595–R601

    Article  CAS  Google Scholar 

  • Rabalais NN, Turner RE, Diaz RJ, Justic D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537

    Article  Google Scholar 

  • Råberg S, Kautsky L (2007) A comparative biodiversity study of associated fauna of perennial fucoids and filamentous algae. Estuar Coast Shelf S 73:249–258

    Article  Google Scholar 

  • Råberg S, Berger-Jönsson R, Björn A, Granéli E, Kautsky L (2005) Effects of Pilayella littoralis on Fucus vesiculosus recruitment: implications for community composition. Mar Ecol Prog Ser 289:131–139

    Article  Google Scholar 

  • Russell G (1985) Recent evolutionary changes in the algae of the Baltic Sea. Brit Phycol J 20:87–104

    Article  Google Scholar 

  • Russell G, Ruuskanen A, Kiirikki M (1998) Sunlight, shade and tidal night: photoadaptation in Fucus vesiculosus L. Sarsia 83:381–386

    Google Scholar 

  • Ruuskanen A, Bäck S (1999) Does environmental stress affect the fertility and frond regeneration of Fucus vesiculosus? Ann Bot Fenn 36:285–290

    Google Scholar 

  • Ruuskanen A, Bäck S, Reitalu T (1999) A comparison of two cartographic exposure methods using Fucus vesiculosus as an indicator. Mar Biol 134:139–145

    Article  Google Scholar 

  • Schaffelke B, Lüning K (1994) A circannual rhythm controls seasonal growth in the kelps Laminaria hyperborea and L. digitata from Helgoland (North Sea). Eur J Phycol 29:49–56

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  Google Scholar 

  • Schmitz OJ, Post E, Burns CE, Johnston KM (2003) Ecosystem responses to global climate change: moving beyond color mapping. Bioscience 53:1199–1205

    Article  Google Scholar 

  • Seinä A, Peltola J (1991) Jäätalven kestoaika ja kiintojään paksuustilastoja merialueilla 1961–1990/duration of the ice season and statistics of fast ice thickness along the Finnish coast 1961-1990. Finn Mar Res 258:1–46

    Google Scholar 

  • Serrão EA, Kautsky L, Brawley SH (1996) Distributional success of the marine seaweed Fucus vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes. Oecologia 107:1–12

    Article  Google Scholar 

  • Serrão EA, Brawley SH, Hedman J, Kautsky L, Samuelsson G (1999) Reproductive success of Fucus vesiculosus (Phaeophyceae) in the Baltic Sea. J Phycol 35:254–269

    Article  Google Scholar 

  • Sideman EJ, Mathieson AC (1983) Ecological and genecological distinctions of a high intertidal dwarf form of Fucus distichus L. Powell in New England. J Exp Mar Biol Ecol 72:171–188

    Article  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  CAS  Google Scholar 

  • Tuomenvirta H, Heino R (1996) Climate changes in Finland: recent findings. Geophysica 32:61–75

    Google Scholar 

  • Tuomenvirta H, Alexandersson H, Drebs A, Frich P, Nordli P (1998) Trends in Nordic and Arctic temperature extremes and ranges. J Clim 13:977–990

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University press, Cambridge, pp 1–504

    Google Scholar 

  • Vinebrooke RD, Cottingham KL, Norberg J, Scheffer M, Dodson SI, Maberly SC, Sommer U (2004) Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104:451–457

    Article  Google Scholar 

  • Waern M (1952) Rocky shore algae in the Öregrund archipelago. Acta Phytogeogr Suec 30:1–298

    Google Scholar 

  • Wahl M, Jormalainen V, Eriksson BK, Coyer JA, Molis M, Schubert H, Dethier M, Karez R, Kruse I, Lenz M, Pearson G, Rohde S, Wikström SA, Olsen JL (2011a) Stress ecology in Fucus: abiotic, biotic and genetic interactions. Adv Mar Biol 59:37–105

    Article  Google Scholar 

  • Wahl M, Link H, Alexandridis N, Thomason JC, Cifuentes M, Costello MJ, da Gama BAP, Hillock K, Hobday AJ, Kaufmann MJ, Keller S, Kraufvelin P, Krüger I, Lauterbach L, Antunes BL, Molis M, Nakaoka M, Nyström J, bin Radzi Z, Stockhausen B, Thiel M, Vance T, Weseloh A, Whittle M, Wiesmann L, Wunderer L, Yamakita T, Lenz M (2011b) Re-structuring of marine communities exposed to environmental change: a global study on the interactive effects of species and functional richness. PLOS One 6: e19514

  • Wallentinus I (1984) Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar Biol 80:215–225

    Article  CAS  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Winer BJ, Brown DR, Michels KM (1991) Statistical principles in experimental design, 3rd edn. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

Our sincere thanks to the staff of Tvärminne Zoological Station for the research facilities generously provided and for their hospitality, to Markus Dernjatin for helping us with the installation and programming of the seawater heater for the aquarium experiment and to David Thomas for commenting on an earlier draft of the manuscript. Walter and Andrée de Nottbeck Foundation provided financial support for the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Kraufvelin.

Additional information

Communicated by K. Bischof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraufvelin, P., Ruuskanen, A.T., Bäck, S. et al. Increased seawater temperature and light during early springs accelerate receptacle growth of Fucus vesiculosus in the northern Baltic proper. Mar Biol 159, 1795–1807 (2012). https://doi.org/10.1007/s00227-012-1970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1970-1

Keywords

Navigation