Skip to main content
Log in

Identification of calanoid copepod prey species via molecular detection of carbon fixation genes

  • Method
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Zooplankton and their phytoplankton prey form the basis of the marine food web, yet historically it has been difficult to discern species-specific trophic interactions. Molecular techniques provide opportunities to obtain taxonomic data where the traditional methodologies for gut content analysis lack resolution. The large subunit gene of RubisC/O, rbcL, was utilized as a molecular marker for the identification of prey species in calanoid copepods. Clone libraries were generated from DNA extracted from seawater and whole copepods during a transect cruise on the northern Gulf of Mexico shelf. Sequence data analysis provided evidence of diatoms, nanoplankton-sized chlorophytes, and cyanobacteria in DNA extracted from whole copepods. These data demonstrate that rbcL can be a useful marker for the identification of copepod phytoplankton prey. Combining the described approach with quantitative techniques such as quantitative PCR will provide opportunities for the assessment of species-specific predator–prey interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Båmstedt U, Gifford DJ, Irigoien X, Atkinson A, Roman M (2000) Feeding. In: Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, London, pp 297–399

    Chapter  Google Scholar 

  • Ban SH, Burns C, Castel J, Chaudron Y, Christou E, Escribano R, Umani SF, Gasparini S, Ruiz FG, Hoffmeyer M, Ianora A, Kang HK, Laabir M, Lacoste A, Miralto A, Ning XR, Poulet S, Rodriguez V, Runge J, Shi JX, Starr M, Uye S, Wang YJ (1997) The paradox of diatom-copepod interactions. Mar Ecol Progr Ser 157:287–293

    Article  Google Scholar 

  • Banse K (1995) Zooplankton—pivotal role in the control of ocean production. ICES J Mar Sci 52:265–277

    Article  Google Scholar 

  • Berger WH, Smetacek VS, Wefer G (1989) Productivity of the ocean: past and present. Wiley, New York

    Google Scholar 

  • Burns CW, Xu ZK (1990) Calanoid copepods feeding on algae and filamentous cyanobacteria—rates of ingestion, defecation and effects on trichome length. J Plankton Res 12:201–213

    Article  Google Scholar 

  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57

    Article  CAS  Google Scholar 

  • Calbet A, Landry MR, Scheinberg RD (2000) Copepod grazing in a subtropical bay: species-specific responses to a midsummer increase in nanoplankton standing stock. Mar Ecol Progr Ser 193:75–84

    Article  Google Scholar 

  • Campbell L, Liu HB, Nolla HA, Vaulot D (1997) Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at Station ALOHA during the 1991–1994 ENSO event. Deep Sea Res Pt I(44):167

    Article  Google Scholar 

  • Corredor JE, Wawrik B, Paul JH, Tran H, Kerkhof L, Lopez JM, Dieppa A, Cardenas O (2004) Geochemical Rate-RNA integration study: Ribulose-1,5-bisphosphate carboxylase/oxygenase gene transcription and photosynthetic capacity of planktonic photoautotrophs. Appl Environ Microb 70:5559–5568. doi:10.1128/Aem.70.9.5459-5468.2004

    Article  Google Scholar 

  • Falkowski PG (1994) The role of phytoplankton photosynthesis in global biogeochemical. Photosynth Res 39:235–258

    Article  CAS  Google Scholar 

  • Gifford DJ, Dagg MJ (1988) Feeding of the estuarine copepod Acartia-tonsa dana—carnivory vs. herbivory in natural microplankton assemblages. B Mar Sci 43:458–468

    Google Scholar 

  • Gray A, Wawrik B, Paul J, Casper E (2003) Molecular detection and quantitation of the red tide dinoflagellate Karenia brevis in the marine environment. Appl Environ Microb 69:5726–5730. doi:10.1128/Aem.69.9.5726-5730.2003

    Article  CAS  Google Scholar 

  • Hansen B, Bjornsen PK, Hansen PJ (1994) The size ratio between planktonic predators and their prey. Limnol Oceanogr 39:395–403

    Article  Google Scholar 

  • Hansen PJ, Calado AJ (1999) Phagotrophy mechanisms and prey selection in free-living dinoflagellates. J Euk Microbiol 46:382–389

    Article  Google Scholar 

  • John DE, Patterson SS, Paul JH (2007a) Phytoplankton-group specific quantitative polymerase chain reaction assays for RuBisCO mRNA transcripts in seawater. Mar Biotechnol 9:747–759. doi:10.1007/s10126-007-9027-z

    Article  CAS  Google Scholar 

  • John DE, Wang ZA, Liu X, Byrne RH, Corredor JE, Lopez JM, Cabrera A, Bronk DA, Tabita FR, Paul JH (2007b) Phytoplankton carbon fixation gene (RuBisCO) transcripts and air-sea CO(2) flux in the Mississippi River plume. ISME J 1:517–531. doi:ismej200770.10.1038/ismej.2007.70

    Article  CAS  Google Scholar 

  • Kiorboe T, Tiselius PT (1987) Gut clearance and pigment destruction in a herbivorous copepod, Acartia-tonsa, and the determination of insitu grazing rates. J Plankton Res 9:525–534

    Article  Google Scholar 

  • Kleppel GS (1992) Environmental-regulation of feeding and egg-production by Acartia-tonsa off Southern California. Mar Biol 112:57–65

    Article  Google Scholar 

  • Kumar S, Tamura K, Dudley J, Nei M (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  Google Scholar 

  • Mackas D, Bohrer R (1976) Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J Exp Mar Biol Ecol 25:77–85

    Article  Google Scholar 

  • Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

    Article  CAS  Google Scholar 

  • Mann KH (1993) Physical oceanography, food-chains, and fish stocks—a review. ICES J Mar Sci 50:105–119

    Article  Google Scholar 

  • Morse D, Salois P, Markovic P, Hastings JW (1995) A nuclear-encoded form-II Rubisco in dinoflagellates. Science 268:1622–1624

    Article  CAS  Google Scholar 

  • Nejstgaard JC, Naustvoll LJ, Sazhin A (2001) Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Mar Ecol Prog Ser 221:59–75

    Article  Google Scholar 

  • Nejstgaard JC, Frischer ME, Raule CL, Gruebel R, Kohlberg KE, Verity PG (2003) Molecular detection of algal prey in copepod guts and fecal pellets. Limnol Oceanogr Methods 1:29–38

    Article  Google Scholar 

  • Nejstgaard JC, Frischer ME, Simonelli P, Troedsson C, Brakel M, Adiyaman F, Sazhin AF, Artigas LF (2008) Quantitative PCR to estimate copepod feeding. Mar Biol 153:565–577. doi:10.1007/s00227-007-0830-x

    Article  CAS  Google Scholar 

  • Paul JH, Alfreider A, Wawrik B (2000) Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico. Mar Ecol Prog Ser 198:9–18

    Article  CAS  Google Scholar 

  • Perissinotto R, Pakhomov EA (1996) Gut evacuation rates and pigment destruction in the Antarctic krill Euphausia superba. Mar Biol 125:47–54

    Article  CAS  Google Scholar 

  • Pinckney JL, Millie DF, Howe KE, Paerl HW, Hurley JP (1996) Flow scintillation counting of C-14-labeled microalgal photosynthetic pigments. J Plankton Res 18:1867–1880

    Article  CAS  Google Scholar 

  • Rippka R, Castenholz RW, Waterbury JB, Hrdman M (1989) From-genus V. Cyanothece Bergey’s manual of systematic bacteriology. Springer, New York, pp 499–501

    Google Scholar 

  • Roman MR, Rublee PA (1981) A method to determine insitu zooplankton grazing rates on natural particle assemblages. Mar Biol 65:303–309

    Article  Google Scholar 

  • Sarthou G, Timmermans KR, Blain S, Treguer P (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42. doi:10.1016/j.seares.2004.01.007

    Article  CAS  Google Scholar 

  • Sautour B, Artigas LF, Delmas D, Herbland A, Laborde P (2000) Grazing impact of micro- and mesozooplankton during a spring situation in coastal waters off the Gironde estuary. J Plankton Res 22:531–552

    Article  Google Scholar 

  • Schluter L, Mohlenberg F (2003) Detecting presence of phytoplankton groups with non-specific pigment signatures. J Appl Phycol 15:465–476

    Article  Google Scholar 

  • Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150:25–32

    Article  CAS  Google Scholar 

  • Stockner JG, Antia NJ (1986) Algal Picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can J Fish Aquat Sci 43:2472–2503

    Article  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microb 62:625–630

    CAS  Google Scholar 

  • Symondson WOC, King RA, Read DS, Traugott M (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963. doi:10.1111/j.1365-294X.2007.03613.x

    Article  Google Scholar 

  • Troedsson C, Simonelli P, Nagele V, Nejstgaard JC, Frischer ME (2009) Quantification of copepod gut content by differential length amplification quantitative PCR (dla-qPCR). Mar Biol 156:253–259. doi:10.1007/s00227-008-1079-8

    Article  CAS  Google Scholar 

  • Turner JT (1984) Zooplankton feeding ecology: Contents of fecal pellets of the copepods Acarha tonsa and Labidocera aestiva from continental shelf and slope waters near the mouth of the Mississippi River. Mar Ecol 5:265–282

    Article  Google Scholar 

  • Turner JT, Tester PA, Hettler WF (1985) Zooplankton feeding ecology—a laboratory study of predation on fish eggs and larvae by the copepods Anomalocera-Ornata and Centropages-Typicus. Mar Biol 90:1–8

    Article  Google Scholar 

  • Urban JL, Mckenzie CH, Deibel D (1993) Nanoplankton found in fecal pellets of macrozooplankton in Coastal Newfoundland Waters. Bot Mar 36:267–281

    Google Scholar 

  • Vestheim H, Edvardsen B, Kaartvedt S (2005) Assessing feeding of a carnivorous copepod using species-specific PCR. Mar Biol 147:381–385. doi:10.1007/s00227-005-1590-0

    Article  CAS  Google Scholar 

  • Wawrik B, Paul JH (2004) Phytoplankton community structure and productivity along the axis of the Mississippi River plume in oligotrophic Gulf of Mexico waters. Aquat Microb Ecol 35:185–196

    Article  Google Scholar 

  • Wawrik B, Paul JH, Tabita FR (2002) Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl Environ Microb 68:3771–3779. doi:10.1128/Aem.68.8.3771-3779.2002

    Article  CAS  Google Scholar 

  • Wawrik B, Paul JH, Campbell L, Griffin D, Houchin L, Fuentes-Ortega A, Müller-Karger F (2003) Vertical structure of the phytoplankton community associated with a coastal plume in the Gulf of Mexico. Mar Ecol Prog Ser 251:87–101

    Article  Google Scholar 

  • Wawrik B, Callaghan AV, Bronk DA (2009) Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the West Florida Shelf as measured using stable isotope probing. Appl Environ Microb 75:6662–6670. doi:10.1128/Aem.01002-09

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. M. J. Dagg’s laboratory (LUMCON) for help with zooplankton collection and use of microscopes. We would also like to thank Dr. N. Rabalais (LUMCON) for ship time and Dr. J. Pinckney (University of South Carolina) for help with HPLC analysis. The work was funded by the National Science Foundation through a grant from the Division of Ocean Sciences—Biological Oceanography (Grant # BIO-OCE 0961900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Wawrik.

Additional information

Communicated by C. Riginos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2,327 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boling, W.B., Sinclair, G.A. & Wawrik, B. Identification of calanoid copepod prey species via molecular detection of carbon fixation genes. Mar Biol 159, 1165–1171 (2012). https://doi.org/10.1007/s00227-011-1877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1877-2

Keywords

Navigation