Skip to main content
Log in

Large-scale and high-resolution visualization of static mechanical properties of wood-adhesive interphase utilizing nanoindentation mapping

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

To improve the mechanical performance of wooden engineered composites, more information is needed to understand the relationship between adhesive infiltration and mechanical properties of wood-adhesive interphase. Nanoindentation mapping (NI Mapping) was hereby used to achieve large-scale and high-resolution visualization of mechanical properties of wood-adhesive interphase for establishing the basic understanding of such correlation, and it showed the convincible reliability (variation less than 3% as compared with commonly applied NI methodology) and exceptional efficiency (180 min of total analysis time as compared with more than 3000 min using the commonly applied NI methodology). Successful investigation into the distribution of mechanical properties of wood-phenolic resin (wood-PF) and wood-polyurethane (wood-PUR) interphases using NI Mapping has confirmed that gradient elevation in mechanical properties of cell wall in wood-adhesive interphase is related to adhesive infiltration. PF adhesive exhibits favored infiltration which led to the enlarged wood-PF interphase region (over 60 μm) and improved micro-/macro-mechanical properties. NI Mapping was also applied for revealing mechanical performance of early wood-adhesive interphase which cannot be characterized by commonly applied NI methodology due to its small size. The mechanical properties of cell wall in early wood-adhesive interphase are poor; however, the interphase region would be enlarged due to the large lumen of early wood. NI Mapping can be a powerful tool to provide significant insights into the mechanical properties of wood-adhesive interphase, and thus, to improve the knowledge of the adhesive infiltration and mechanical properties of cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aicher S, Hirsch M, Christian Z (2016) Hybrid cross-laminated timber plates with beech wood cross-layers. Constr Build Mater 124:1007–1018

    Article  Google Scholar 

  • Altgen D, Grigsby W, Altgen M et al (2019) Analyzing the UF resin distribution in particleboards by confocal laser scanning microscopy. Compos Part A-Appl s 125:105529

    Article  CAS  Google Scholar 

  • Baldan A (2012) Adhesion phenomena in bonded joints. Int J Adhes Adhes 38:95–116

    Article  CAS  Google Scholar 

  • Beaulieu J, Dutilleul P (2019) Applications of computed tomography (CT) scanning technology in forest research: a timely update and review. Can J Forest Res 49(10):1173–1188

    Article  Google Scholar 

  • Cao Y, Zhang W, Yang P et al (2021) Comparative investigation into the interfacial adhesion of plywood prepared by air spray atomization and roller coating. Eur J Wood Prod 79(4):887–896

    Article  CAS  Google Scholar 

  • Evans P, Morrison O, Senden T et al (2010) Visualization and numerical analysis of adhesive distribution in particleboard using X-ray micro-computed tomography. Int J Adhes Adhes 30(8):754–762

    Article  CAS  Google Scholar 

  • Frihart R (2013) Wood adhesion and adhesives. Crc Press-Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Gindl S, Jeronimidis G (2004) The interphase in phenol–formaldehyde and polymeric methylene diphenyldiisocyanate glue lines in wood. Int J Adhes Adhes 24:279–286

    Article  CAS  Google Scholar 

  • Gavrilovic-Grmusa I, Dunky M, Miljkovic J et al (2012) Influence of the viscosity of UF resins on the radial and tangential penetration into poplar wood and on the shear strength of adhesive joints. Holzforschung 66(7):849–856

    Article  CAS  Google Scholar 

  • Gindl W, Sretenovic A, Vincenti A et al (2005) Direct measurement of strain distribution along a wood bond line. Part 2: Effects of adhesive penetration on strain distribution. Holzforschung 59(3):307–310

    Article  CAS  Google Scholar 

  • Herzele S, van Herwijnen G, Edler M et al (2018) Cell-layer dependent adhesion differences in wood bonds. Compos Part A-Appl s 114:21–29

    Article  CAS  Google Scholar 

  • Herzele S, van Herwijnen H, Griesser T et al (2020) Differences in adhesion between 1C-PUR and MUF wood adhesives to (ligno)cellulosic surfaces revealed by nanoindentation. Int J Adhes Adhes 98:102507

    Article  CAS  Google Scholar 

  • Huang Y, Yang Z, Ren W et al (2015) 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model. Int J Solids Struct 67–68:340–352

    Article  Google Scholar 

  • Jakes J, Frihart C, Hunt C et al (2019) X-ray methods to observe and quantify adhesive penetration into wood. J Mater Sci 54(1):705–718

    Article  CAS  Google Scholar 

  • Jakes J, Frihart R, Beecher F et al (2008) Experimental method to account for structural compliance in nanoindentation measurements. J Mater Res 23(4):1113–1127

    Article  CAS  Google Scholar 

  • Jakes J, Hunt G, Yelle J et al (2015) Synchrotron-based X-ray fluorescence microscopy in conjunction with nanoindentation to study molecular-scale interactions of phenol-formaldehyde in wood cell walls. ACS Appl Mater Interfaces 7(12):6584–6589

    Article  CAS  PubMed  Google Scholar 

  • Jakes J, Stone D (2021) Best practices for Quasistatic Berkovich Nanoindentation of Wood Cell Walls. Forests 12(12):1696

    Article  Google Scholar 

  • Kamke F (2007) Adhesive penetration in wood—a review. Wood Fiber Sci 39(2):205–220

    CAS  Google Scholar 

  • Kamke F, Nairn J, Muszynski L et al (2014) Methodology for micromechanical analysis of wood adhesive bonds using X-ray computed tomography and numerical modeling. Wood Fiber Sci 46(1):15–28

    CAS  Google Scholar 

  • Kläusler O, Bergmeier W, Karbach A et al (2014) Influence of N, N-dimethylformamide on one-component moisture-curing polyurethane wood adhesives. Int J Adhes Adhes 55:69–76

    Article  CAS  Google Scholar 

  • Konnerth J (2014) Effect of plasma treatment on cell-wall adhesion of urea-formaldehyde resin revealed by Nanoindentation. Holzforschung 68(6):707–712

    Article  CAS  Google Scholar 

  • Konnerth J, Gindl W (2006) Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung 60(4):429–433

    Article  CAS  Google Scholar 

  • Konnerth J, Valla A, Gindl W (2007) Nanoindentation mapping of a wood-adhesive bond. Appl Phys a: Mater Sci Process 88(2):371–375

    Article  CAS  Google Scholar 

  • Kutukova K, Niese S, Sander C et al (2018) A laboratory X-ray microscopy study of cracks in on-chip interconnect stacks of integrated circuits. Appl Phys Lett 113(9):091901

    Article  CAS  Google Scholar 

  • Li A, Jiang J, Lu J (2019) Differences in the viscoelastic properties between earlywood and latewood in the growth rings of Chinese fir as analyzed by dynamic mechanical analysis (DMA) in the temperature range between-120 degrees C and 120 degrees C. Holzforschung 73(3):241–250

    Article  CAS  Google Scholar 

  • Li Q, Li Y, Zhou L (2017) Nanoscale evaluation of multi-layer interfacial mechanical properties of sisal fiber reinforced composites by nanoindentation technique. Compos Sci Technol 152:211–221

    Article  CAS  Google Scholar 

  • Li W, Wang M, Cheng J (2020) Indentation hardness of the cohesive-frictional materials. Int J Mech Sci 180:105666

    Article  Google Scholar 

  • Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48:11–36

    Article  CAS  Google Scholar 

  • Liu C, Zhang Y, Wang S et al (2014) Micromechanical Properties of the Interphase in Cellulose Nanofiber-reinforced Phenol Formaldehyde Bondlines. BioResources 9(3):5529–5541

    Google Scholar 

  • Liu H, Shang J, Kamke F et al (2018) Bonding performance and mechanism of thermal-hydro-mechanical modified veneer. Wood Sci Technol 52(2):343–363

    Article  CAS  Google Scholar 

  • Liu Z, Zhang J, He B et al (2021) High-speed nanoindentation mapping of a near-alpha titanium alloy made by additive manufacturing. J Mater Res 36(11):2223–2234

    Article  CAS  Google Scholar 

  • McKinley P, Kamke F, Sinha A et al (2018) Analysis of adhesive penetration into wood using nano-X-Ray computed tomography. Wood Fiber Sci 50(1):66–76

    Article  CAS  Google Scholar 

  • Obersriebnig M, Konnerth J, Gindl-Altmutter W (2013) Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation. Int J Adhes Adhes 40:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obersriebnig M, Veigel S, Gindl-Altmutter W et al (2012) Determination of adhesive energy at the wood cell-wall/UF interface by nanoindentation (NI). Holzforschung 66(6):781–787

    Article  CAS  Google Scholar 

  • Oliver W, Pharr G (1992) An improved technique for determing hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  CAS  Google Scholar 

  • Oliver W, Pharr G (2004) Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res 19(1):3–20

    Article  CAS  Google Scholar 

  • Phani P, Oliver W, Pharr G (2021) Measurement of hardness and elastic modulus by load and depth sensing indentation: improvements to the technique based on continuous stiffness measurement. J Mater Res 36(11):2137–2153

    Article  CAS  Google Scholar 

  • Qi D, Hu W, Xin K et al. (2020) In-situ synchrotron X-ray tomography investigation of micro lattice manufactured with the projection micro-stereolithography (P mu SL) 3D printing technique: Defects characterization and in-situ shear test. Compos Struct 252 (112710)

  • Serrano E, Enquist B (2005) Contact-free measurement and non-linear finite element analyses of strain distribution along wood adhesive bonds. Holzforschung 59:641–647

    Article  CAS  Google Scholar 

  • Singh A, Nuryawan A, Park B et al (2015) Urea-formaldehyde resin penetration into Pinus radiata tracheid walls assessed by TEM-EDXS. Holzforschung 69(3):303–306

    Article  CAS  Google Scholar 

  • Szewczykowski P, Skarzynski L (2019) Application of the X-ray micro-computed tomography to the analysis of the structure of polymeric materials. Polimery 64(1):12–22

    Article  CAS  Google Scholar 

  • Vignesh B, Oliver W, Kumar G et al (2019) Critical assessment of high speed nanoindentation mapping technique and data deconvolution on thermal barrier coatings. Mater Des 181:108084

    Article  CAS  Google Scholar 

  • Wang X, Chen X, Xie X et al (2018a) Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (Pinus massoniana Lamb.). Holzforschung 72(12):1063–1070

    Article  CAS  Google Scholar 

  • Wang X, Zhao L, Deng Y et al (2018b) Effect of the penetration of isocyanates (pMDI) on the nanomechanics of wood cell wall evaluated by AFM-IR and nanoindentation (NI). Holzforschung 72(4):301–309

    Article  CAS  Google Scholar 

  • Wang X, Deng Y, Li Y et al (2016) In situ identification of the molecular-scale interactions of phenol-formaldehyde resin and wood cell walls using infrared nanospectroscopy. RSC Adv 6(80):76318–76324

    Article  CAS  Google Scholar 

  • Wang X, Wang S, Xie X et al (2017a) Multi-scale evaluation of the effects of nanoclay on the mechanical properties of wood/phenol formaldehyde bondlines. Int J Adhes Adhes 74:92–99

    Article  CAS  Google Scholar 

  • Wang X, Zhao L, Xu B et al (2017b) Effects of accelerated aging treatment on the microstructure and mechanics of wood-resin interphase. Holzforschung 72(3):235–241

    Article  CAS  Google Scholar 

  • Wascher R, Bittner F, Avramidis G et al (2020) Use of computed tomography to determine penetration paths and the distribution of melamine resin in thermally-modified beech veneers after plasma treatment. Compos Part A-Appl S 132:105821

    Article  CAS  Google Scholar 

  • Wimmer R, Lucas B (1997) Comparing mechanical properties of secondary wall and cell corner middle lamella in spruce wood. IAWA J 18(1):77–88

    Article  Google Scholar 

  • Wu Y, Zhang H, Yang L et al (2021) Understanding the effect of extractives on the mechanical properties of the waterborne coating on wood surface by nanoindentation 3D mapping. J Mater Sci 56(2):1401–1412

    Article  CAS  Google Scholar 

  • Yu Z, Fan M (2017) Short- and long-term performance of wood based panel products subjected to various stress modes. Constr Build Mater 156:652–660

    Article  Google Scholar 

  • Zauner M, Keunecke D, Mokso R et al (2012) Synchrotron-based tomographic microscopy (SbTM) of wood: development of a testing device and observation of plastic deformation of uniaxially compressed Norway spruce samples. Holzforschung 66(8):973–979

    Article  CAS  Google Scholar 

  • Zhang T, Bai S, Zhang Y et al (2012) Viscoelastic properties of wood materials characterized by nanoindentation experiments. Wood Sci Technol 46(5):1003–1016

    Article  CAS  Google Scholar 

  • Zhang X, Zhao Q, Wang S et al (2010) Characterizing strength and fracture of wood cell wall through uniaxial micro-compression test. Compos Part A-Appl s 41(5):632–638

    Article  CAS  Google Scholar 

  • Zhang Z, Cai S, Li Y et al (2020) High performances of plant fiber reinforced composites-A new insight from hierarchical microstructures. Compos Sci Technol 194:108151

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully the funding support from the National Natural Science Foundation of China (31870548), the Research Foundation of Talented Scholars of Zhejiang A & F University (2020FR070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yizhong Cao or Qiang Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Cao, Y., Chen, H. et al. Large-scale and high-resolution visualization of static mechanical properties of wood-adhesive interphase utilizing nanoindentation mapping. Wood Sci Technol 56, 1029–1045 (2022). https://doi.org/10.1007/s00226-022-01394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-022-01394-x

Navigation