Skip to main content

Advertisement

Log in

Micromechanical properties of wood cell wall and interface compound middle lamella using quasi-static nanoindentation and dynamic modulus mapping

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Micromechanical properties of individual phases within wood tissues are crucially important for the processing and utilization of this biomass material. The quasi-static nanoindentation and dynamic modulus mapping techniques were employed to study the micromechanical properties of wood cell walls and their interface regions. Nanoindentation results showed that the reduced modulus of secondary cell walls (18 GPa) was twice that of interface compound middle lamella (CML) (7 GPa). Modulus mapping, with advantages of high resolution and undamaged test over conventional nanoindentation, was able to analyse the subtle variations in micromechanical properties of individual phases within the whole wood tissues, especially interface layers. The variation tendency across adjacent cell walls was similar to that tested by nanoindentation, and the secondary cell walls exhibited maxima in the middle of the secondary wall and slightly reduction approaching to the S1 and S3 layers. Moreover, the storage modulus of interface region CML showed “W” distribution, which meant that the modulus first fell and then rose from the central area to edge regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472

    Article  Google Scholar 

  2. Mishnaevsky L, Qing H (2008) Micromechanical modelling of mechanical behaviour and strength of wood: state-of-the-art review. Comput Mater Sci 44:363–370

    Article  Google Scholar 

  3. Wimmer R, Lucas BN, Tsui TY, Oliver WC (1997) Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci Technol 31:131–141

    Article  Google Scholar 

  4. Yu Y, Fei B, Wang H, Tian G (2011) Longitudinal mechanical properties of cell wall of Masson pine (Pinus massoniana Lamb) as related to moisture content: a nanoindentation study. Holzforschung 65:121–126

    Google Scholar 

  5. Wu Y, Wang S, Zhou D, Xing C, Zhang Y, Cai Z (2010) Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation. Bioresour Technol 101:2867–2871

    Article  Google Scholar 

  6. Wimmer R, Lucas BN (1997) Comparing mechanical properties of secondary wall and cell comer middle lamella in spruce wood. IAWA J 18:77–88

    Article  Google Scholar 

  7. Tze WTY, Wang S, Rials TG, Pharr GM, Kelley SS (2007) Nanoindentation of wood cell walls: continuous stiffness and hardness measurements. Compos Part A Appl Sci Manuf 38:945–953

    Article  Google Scholar 

  8. Gindl W, Gupta HS, Schöberl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A 79:2069–2073

    Article  Google Scholar 

  9. Konnerth J, Gierlinger N, Keckes J, Gindl W (2009) Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle. J Mater Sci 44:4399–4406. doi:10.1007/s10853-009-3665-7

    Article  Google Scholar 

  10. Konnerth J, Valla A, Gindl W (2007) Nanoindentation mapping of a wood-adhesive bond. Appl Phys A Mater Sci Process 88:371–375

    Article  Google Scholar 

  11. Barick AK, Tripathy DK (2010) Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding. Mater Sci Eng A 527:812–823

    Article  Google Scholar 

  12. Ryou H, Pashley DH, Tay FR, Arola D (2013) A characterization of the mechanical behavior of resin-infiltrated dentin using nanoscopic dynamic mechanical analysis. Dent Mater 29:719–728

    Article  Google Scholar 

  13. Sahin O, Erina N (2008) High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 19:445717

    Article  Google Scholar 

  14. Lashgari HR, Chen Z, Liao XZ, Chu D, Ferry M, Li S (2015) Thermal stability, dynamic mechanical analysis and nanoindentation behavior of FeSiB (Cu) amorphous alloys. Mater Sci Eng A 626:480–499

    Article  Google Scholar 

  15. Lee G, Kim JY, Burek MJ, Greer JR, Tsui TY (2011) Plastic deformation of indium nanostructures. Mater Sci Eng A 528:6112–6120

    Article  Google Scholar 

  16. Králík V, Němeček J (2014) Comparison of nanoindentation techniques for local mechanical quantification of aluminium alloy. Mater Sci Eng A 618:118–128

    Article  Google Scholar 

  17. Shilo D, Drezner H, Dorogoy A (2008) Investigation of interface properties by nanoscale elastic modulus mapping. Phys Rev Lett 100:35505

    Article  Google Scholar 

  18. Balooch G, Marshall GW, Marshall SJ, Warren OL, Asif SAS, Balooch M (2004) Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J Biomech 37:1223–1232

    Article  Google Scholar 

  19. Wilkinson TM, Zargari S, Prasad M, Packard CE (2015) Optimizing nano-dynamic mechanical analysis for high-resolution, elastic modulus mapping in organic-rich shales. J Mater Sci 50:1041–1049. doi:10.1007/s10853-014-8682-5

    Article  Google Scholar 

  20. Gershon AL, Bruck HA, Xu S, Sutton MA, Tiwari V (2010) Multiscale mechanical and structural characterizations of Palmetto wood for bio-inspired hierarchically structured polymer composites. Mater Sci Eng C 30:235–244

    Article  Google Scholar 

  21. Uskokovic PS, Tang CY, Tsui CP, Ignjatovic N, Uskokovic DP (2007) Micromechanical properties of a hydroxyapatite/poly-l-lactide biocomposite using nanoindentation and modulus mapping. J Eur Ceram Soc 27:1559–1564

    Article  Google Scholar 

  22. Prošek Z, Králík V, Topič J, Nežerka V, Indrová K, Tesárek P (2015) Microstructure description and micromechanical properties of spruce wood. Acta Polytech 55:39–49

    Article  Google Scholar 

  23. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  24. Asif SAS, Wahl KJ, Colton RJ (1999) Nanoindentation and contact stiffness measurement using force modulation with a capacitive load–displacement transducer. Rev Sci Instrum 70:2408–2413

    Article  Google Scholar 

  25. Asif SAS, Wahl KJ, Colton RJ, Warren OL (2001) Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J Appl Phys 90:1192–1200

    Article  Google Scholar 

  26. Shangguan W, Ren H, Lv J, Fei B, Chen Z, Zhao R, Zhao Y (2014) Cell wall property changes of white rot larch during decay process. BioResources 9:4297–4310

    Google Scholar 

  27. Cave ID, Hutt L (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2:268–278

    Article  Google Scholar 

  28. Jakes JE, Frihart CR, Beecher JF, Moon RJ, Resto PJ, Melgarejo ZH, Surez OM, Baumgart H, Elmustafa AA, Stone DS (2009) Nanoindentation near the edge. J Mater Res 24:1016–1031

    Article  Google Scholar 

  29. Jakes JE, Frihart CR, Beecher JF, Moon RJ, Stone DS (2008) Experimental method to account for structural compliance in nanoindentation measurements. J Mater Res 23:1113–1127

    Article  Google Scholar 

  30. Bergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37:151–156. doi:10.1023/A:1013115925679

    Article  Google Scholar 

  31. Gindl W, Schöberl T (2004) The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Compos Part A Appl Sci Manuf 35:1345–1349

    Article  Google Scholar 

  32. Dokukin ME, Sokolov I (2012) On the measurements of rigidity modulus of soft materials in nanoindentation experiments at small depth. Macromolecules 45:4277–4288

    Article  Google Scholar 

  33. Dokukin ME, Sokolov I (2012) Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir 28:16060–16071

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial supports from the Nature Science Foundation of China (Grant Number 31370012). The authors would also like to thank Fengqin Dong from the Institute Botany, the Chinese Academy of Sciences for her assistance in sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanying Lin.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Lin, L., Fu, F. et al. Micromechanical properties of wood cell wall and interface compound middle lamella using quasi-static nanoindentation and dynamic modulus mapping. J Mater Sci 53, 549–558 (2018). https://doi.org/10.1007/s10853-017-1185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1185-4

Keywords

Navigation