Skip to main content
Log in

Inverse analysis of oxygen diffusivity in oak wood using the back-face method: application to cooperage

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

During the aging of wines and spirits in oak barrels, oxygen diffusion through the wood occurs and leads to mild oxygenation of the beverage. In this study, the oxygen diffusivity in oak wood was determined by inverse analysis using the back-face method. In the measurement setup, a defined oxygen concentration was applied to the front of a sample and the variation of oxygen concentration due to gas diffusion through the sample was measured on the back. The experiment was carried out simultaneously on several samples. It was then possible to study 36 samples and to assess the effect of several parameters in a reasonable time. A finite volume model using the actual experimental conditions as boundary conditions was implemented for the identification of the diffusion coefficient. The obtained values range between 4.64 × 10−11 and 2.02 × 10−9 m2 s−1 and highlight the high heterogeneity of oak wood. Such low values, compared to the diffusion of oxygen in air (a factor 105 lower), reflect the huge tortuosity of oak wood in its tangential direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agoua E, Zohoun S, Perré P (2001) ‘Utilisation d’une double enceinte pour déterminer le coefficient de diffusion d’eau liée dans le bois en régime transitoire: recours a la simulation numérique pour valider la méthode d’identification’ (A double climatic chamber used to measure the diffusion coefficient of water in wood in unsteady-state conditions: determination of the best fitting method by numerical simulation). Int J Heat Mass Transf 44:3731–3744

    Article  CAS  Google Scholar 

  • Almeida G, Brito JO, Perré P (2009) Changes in wood-water relationship due to heat treatment assessed on micro-samples of three Eucalyptus species. Holzforschung 63:80–88. https://doi.org/10.1515/HF.2009.026

    Article  CAS  Google Scholar 

  • Almeida G, Santos DVB, Perré P (2014) Mild pyrolysis of fast-growing wood species (Caribbean pine and Rose gum): Dimensional changes predicted by the global mass loss. Biomass Bioenerg 70:407–415. https://doi.org/10.1016/j.biombioe.2014.07.028

    Article  CAS  Google Scholar 

  • Avramidis S (2007) Bound water migration in wood. In: Fundamentals of wood drying, pp 105–124

  • Bilbao R, Millera A, Arauzo J (1989) Kinetics of weight loss by thermal decomposition of xylan and lignin. Influence of experimental conditions. Thermochim Acta 143:137–148

    Article  CAS  Google Scholar 

  • Boidron JN, Chatonnet P, Pons M (1988) ‘Influence du bois sur certaines substances odorantes des vins’, (Influence of wood on certain odorous substances in wines). Connaissance De La Vigne Et Du Vin 22(4):275–294. https://doi.org/10.20870/oeno-one.1988.22.4.1263

    Article  CAS  Google Scholar 

  • Busser T, Berger J, Piot A, Pailha M, Woloszyn M (2018) Dynamic experimental method for identification of hygric parameters of a hygroscopic material. Build Environ 131:197–209. https://doi.org/10.1016/j.buildenv.2018.01.002

    Article  Google Scholar 

  • Cadahía E, Varea S, Muñoz L, Fernández de Simón B, García-Vallejo M (2001) Evolution of Ellagitannins in Spanish, French, and American oak woods during natural seasoning and toasting. J Agric Food Chem 49:3677–3684

    Article  CAS  Google Scholar 

  • Challansonnex A, Pierre F, Casalinho J, Lv P, Perré P (2018) Mass diffusivity determination of various building materials based on inverse analysis of relative humidity evolution at the back face of a sample. Constr Build Mater 193:539–546. https://doi.org/10.1016/j.conbuildmat.2018.10.219

    Article  Google Scholar 

  • Comstock GL (1970) Directional permeability of softwoods. Wood Fiber 1(4):283–289

    Google Scholar 

  • Côté WA (1963) Structural factors affecting permeability of wood. J Polymer Sci Part C 2(1):231–242

    Article  Google Scholar 

  • Currie JA (1960) Gaseous diffusion in porous media. Part 2.—dry granular materials. Br J Appl Phys 11:318

    Article  CAS  Google Scholar 

  • Cussler EL (2009) Diffusion: mass transfer in fluid systems. Cambridge University Press

    Book  Google Scholar 

  • Day MP, Schmidt SA, Smith PA, Wilkes EN (2015) Use and impact of oxygen during winemaking. Aust J Grape Wine Res 21:693–704. https://doi.org/10.1111/ajgw.12199

    Article  CAS  Google Scholar 

  • del Alamo-Sanza M, Nevares I (2017) Oak wine barrel as an active vessel: a critical review of past and current knowledge. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2017.1330250

    Article  PubMed  Google Scholar 

  • del Alamo-Sanza M, Nevares I, Mayr T, Baro JA, Martínez-Martínez V, Ehgartner J (2016) Analysis of the role of wood anatomy on oxygen diffusivity in barrel staves using luminescent imaging. Sens Actuators B Chem 237:1035–1043. https://doi.org/10.1016/j.snb.2016.08.075

    Article  CAS  Google Scholar 

  • del Alamo-Sanza M, Miguel L, Nevares I (2017) Characterization of the oxygen transmission rate of oak wood species used in cooperage. J Agric Food Chem 65:648–655. https://doi.org/10.1021/acs.jafc.6b05188

    Article  PubMed  CAS  Google Scholar 

  • Dullien FAL (1979) Porous media: fluid transport and pore structure. Academic Press, Cambridge. https://doi.org/10.1016/B978-0-12-223650-1.50008-5

    Book  Google Scholar 

  • Feuillat F, Keller R (1997) Variability of oak wood anatomy relating to cask properties. Am J Enol Vitic 48(4):502–508

    Google Scholar 

  • Feuillat F, Dupouey J, Sciama D, Keller R (1997) A new attempt at discrimination between Quercus petraea and Quercus robur based on wood anatomy. Can J for Res 27:343–351

    Article  Google Scholar 

  • Ghanbarian B, Hunt AG, Ewing RP, Sahimi M (2013) Tortuosity in porous media: a critical review. Soil Sci Soc Am J 77(5):1461–1477. https://doi.org/10.2136/sssaj2012.0435

    Article  CAS  Google Scholar 

  • Huber B, Holdheide W, Raack K (1941) ‘Zur Frage der Unterscheidbarkeit des Holzes von Stiel-und Traubeneiche’ (On the question of the distinguishability of the wood of pedunculate and sessile oaks). Holz Roh- Werkst 4(11):373–380

    Article  Google Scholar 

  • Hukka A (1999) The effective diffusion coefficient and mass transfer coefficient of nordic softwoods as calculated from direct drying experiments. Holzforschung 53(5):534–540

    Article  CAS  Google Scholar 

  • Jacquiot C, Trenard Y, Dirol D (1973) Atlas danatomie des bois des angiospermes: essences feuillues. (Atlas of wood anatomy of angiosperms: hardwood species), vol 2. Centre Technique du Bois, Paris, p 133

    Google Scholar 

  • Kelly M, Wollan D (2003) Micro-oxygenation of wine in barrels. Australian and New Zealand Grapegrower and Winemaker, Broadview, pp 29–32

    Google Scholar 

  • Kristina T (2008) Simultaneous measurement of vapor and liquid moisture transport in porous building materials. Build Environ 43:2188–2192. https://doi.org/10.1016/j.buildenv.2008.01.001

    Article  Google Scholar 

  • Moutounet M, Mazauric JP, Saint Pierre B, Hanocq JF (1998) Gaseous exchange in wines stored in barrels. J Sci Tech Tonnellerie (france) 4:115–145

    CAS  Google Scholar 

  • Navarro M, Kontoudakis N, Gómez-Alonso S, García-Romero E, Canals JM, Hermosín-Gutíerrez I, Zamora F (2018) Influence of the volatile substances released by oak barrels into a Cabernet Sauvignon red wine and a discolored Macabeo white wine on sensory appreciation by a trained panel. Eur Food Res Technol 244(2):245–258. https://doi.org/10.1007/s00217-017-2951-x

    Article  CAS  Google Scholar 

  • Neimsuwan T, Wang S, Taylor AM, Rials TG (2008) Statics and kinetics of water vapor sorption of small loblolly pine samples. Wood Sci Technol 42:493–506. https://doi.org/10.1007/s00226-007-0165-2

    Article  CAS  Google Scholar 

  • Nepveu G (1994) Variabilité. In: Le Bois, Matériau d’Ingénierie. ARBOLOR, N, pp 127–182

  • Nevares I, del Alamo-Sanza M (2015) Oak stave oxygen permeation: a new tool to make barrels with different wine oxygenation. J Agric Food Chem 63:1268–1275. https://doi.org/10.1021/jf505360r

    Article  PubMed  CAS  Google Scholar 

  • Nevares I, Crespo R, Gonzalez C, del Alamo-Sanza M (2014) Imaging of oxygen transmission in the oak wood of wine barrels using optical sensors and a colour camera. Aust J Grape Wine Res 20(3):353–360. https://doi.org/10.1111/ajgw.12104

    Article  CAS  Google Scholar 

  • Nevares I, Mayr T, Baro JA, Ehgartner J, Crespo R, del Alamo-Sanza M (2016) Ratiometric oxygen imaging to predict oxygen diffusivity in oak wood during red wine barrel aging. Food Bioprocess Technol 9(6):1049–1059. https://doi.org/10.1007/s11947-016-1695-0

    Article  CAS  Google Scholar 

  • Nevares I, del Alamo-Sanza M, Martínez-Martínez V, Menéndez-Miguélez M, Van den Bulcke J, Van Acker J (2019) Influence of Quercus petraea Liebl. wood structure on the permeation of oxygen through wine barrel staves. Holzforschung 73(9):859–870

    Article  CAS  Google Scholar 

  • Olek W, Perré P, Weres J (2005) Inverse analysis of the transient bound water diffusion in wood. Holzforschung 59(1):38–45. https://doi.org/10.1515/HF.2005.007

    Article  CAS  Google Scholar 

  • Perré P, Turner IW (1999) A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media. Int J Heat Mass Transf 42(24):4501–4521. https://doi.org/10.1016/S0017-9310(99)00098-8

    Article  Google Scholar 

  • Perré P, Houngan AC, Jacquin P (2007) Mass diffusivity of beech determined in unsteady-state using a magnetic suspension balance. Drying Technol 25(3):1341–1347. https://doi.org/10.1080/07373930701438923

    Article  Google Scholar 

  • Perré P, Pierre F, Casalinho J, Ayouz M (2015) Determination of the mass diffusion coefficient based on the relative humidity measured at the back face of the sample during unsteady regimes. Drying Technol 33(9):1068–1075. https://doi.org/10.1080/07373937.2014.982253

    Article  CAS  Google Scholar 

  • Petty JA (1973) Diffusion of non-swelling gases through dry conifer wood. Wood Sci Technol 7:297–307

    Article  Google Scholar 

  • Pohlmann JG, Osório E, Vilela ACF, Diez MA, Borrego AG (2014) Integrating physicochemical information to follow the transformations of biomass upon torrefaction and low-temperature carbonization. Fuel 131:17–27. https://doi.org/10.1016/j.fuel.2014.04.067

    Article  CAS  Google Scholar 

  • Qiu Y, Lacampagne S, Mirabel M, Mietton-Peuchot M, Rémi G (2018) Oxygen desorption and oxygen transfer through oak stave and oak stave gaps: an innovative permeameter. OENO One 52(1):1–14. https://doi.org/10.20870/oeno-one.2017.51.4.1066

    Article  Google Scholar 

  • Ramos-Carmona S, Martínez JD, Pérez JF (2018) Torrefaction of patula pine under air conditions: a chemical and structural characterization. Ind Crops Prod 118:302–310. https://doi.org/10.1016/j.indcrop.2018.03.062

    Article  CAS  Google Scholar 

  • Robert EM, Mencuccini M, Martínez-Vilalta J (2017) The anatomy and functioning of the xylem in oaks. In: Gil-Pelegrín E, Peguero-Pina J, Sancho-Knapik D (eds) Oaks physiological ecology exploring the functional diversity of genus Quercus L. tree physiology, vol 7. Springer, Cham, pp 261–302. https://doi.org/10.1007/978-3-319-69099-5_8

    Chapter  Google Scholar 

  • Roussey C, Colin J, Teissier du Cros R, Casalinho J, Perré P (2021) In-situ monitoring of wine volume, barrel mass, ullage pressure and dissolved oxygen for a better understanding of wine-barrel-cellar interactions. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2020.110233

    Article  Google Scholar 

  • Sano Y, Jansen S (2006) Perforated pit membranes in imperforate tracheary elements of some angiosperms. Ann Bot 97:1045–1053. https://doi.org/10.1093/aob/mcl049

    Article  PubMed  PubMed Central  Google Scholar 

  • Siau JF (1984) Transport processes in wood, vol 2. Springer, Berlin, p 57. https://doi.org/10.1007/978-3-662-04931-0

    Book  Google Scholar 

  • Slanina P, Silarova S (2009) Moisture transport through perforated vapour retarders. Build Environ 44:1617–1626. https://doi.org/10.1016/j.buildenv.2008.10.006

    Article  Google Scholar 

  • Sorz J, Hietz P (2006) Gas diffusion through wood: implications for oxygen supply. Trees Struct Funct 20(1):34–41. https://doi.org/10.1007/s00468-005-0010-x

    Article  Google Scholar 

  • Tarmian A, Rémond R, Dashti H, Perré P (2012) Moisture diffusion coefficient of reaction woods: compression wood of Picea abies L. and tension wood of Fagus sylvatica. Wood Sci Technol 46:405–417. https://doi.org/10.1007/s00226-011-0413-3

    Article  CAS  Google Scholar 

  • Vivas N (2002) Manuel de tonnellerie: À l’usage des utilisateurs de futaille (Cooperage Manual), 2nd edn. Éditions Féret, Bordeaux, p 210

    Google Scholar 

  • Vivas N (2014) Théorie et pratique de l’élevage des vins rouges. (Theory and practice of red wine maturation). Editions Féret, Bordeaux, p 458

    Google Scholar 

  • Vivas N, Glories Y (1997) ‘Modélisation et calcul du bilan des apports d’oxygène au cours de l’élevage des vins rouges. II. Les apports liés au passage d’oxygène au travers de la barrique’ (Modeling and calculation of the oxygen supply balance during the maturation of red wines. II. Oxygen supply through the barrel). Progrès Agricole Et Viticole 114(13–14):315–316

    Google Scholar 

  • Vivas N, Debèda H, Ménil F, de Gaulejac NV, Nonier MF (2003) ‘Mise en évidence du passage de l’oxygène au travers des douelles constituant les barriques par l’utilisation d’un dispositif original de mesure de la porosité du bois. Premiers résultats’ (Demonstration of the passage of oxygen through the staves constituting the barrels by using an original device for measuring the porosity of the wood. First results). Sci Aliment 23:655–678. https://doi.org/10.3166/sda.23.655-678

    Article  CAS  Google Scholar 

  • Vololonirina O, Coutand M, Perrin B (2014) Characterization of hygrothermal properties of wood-based products—impact of moisture content and temperature. Constr Build Mater 63:223–233. https://doi.org/10.1016/j.conbuildmat.2014.04.014

    Article  Google Scholar 

  • Walker FS (1978) Pedunculate and sessile oaks: species determination from differences between their wood. J Fletcher Br Archaeol Rep 51:329–338

    Google Scholar 

  • Whitaker S (1977) Simultaneous heat, mass and momentum transfer in porous media: a theory of drying. Adv Heat Transf 13:119–203

    Article  CAS  Google Scholar 

  • Yokota T (1967) Diffusion of non swelling gas through wood. Mokuzai Gakkaishi 13(6):225–231

    Google Scholar 

  • Zamora F (2019) Barrel aging; types of wood. In: Red wine technology, pp 125–147. https://doi.org/10.1016/B978-0-12-814399-5.00009-8

  • Zohoun S (1998) Détermination de la diffusivité massique dans le domaine hygroscopique du bois: comparaison des mesures en régimes permanent et transitoire. (Determination of mass diffusivity in the hygroscopic domain of wood: comparison of steady state and transient measurements), Doctoral dissertation, Institut National Polytechnique de Lorraine

  • Zohoun S, Agoua E, Degan G, Perré P (2003) An experimental correction proposed for an accurate determination of mass diffusivity of wood in steady regime. Heat Mass Transf 39:147–155. https://doi.org/10.1007/s00231-002-0324-9

    Article  Google Scholar 

Download references

Acknowledgements

This study was carried out in the Centre Européen de Biotechnologie et de Bioéconomie (CEBB), supported by the Région Grand Est, Département de la Marne, Grand Reims, and the European Union. In particular, the authors would like to thank the Département de la Marne, Grand Reims, Région Grand Est, and the European Union, along with the European Regional Development Fund (ERDF Champagne-Ardenne 2014–2020), for their financial support of the Chair of Biotechnology of CentraleSupélec. The authors would also like to thanks Département de la Marne for its financial support.

Funding

This work was financed by the Association Nationale pour la Recherche et la Technologie (CIFRE convention) and Chêne & Cie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Roussey.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roussey, C., Perré, P., Casalinho, J. et al. Inverse analysis of oxygen diffusivity in oak wood using the back-face method: application to cooperage. Wood Sci Technol 56, 219–239 (2022). https://doi.org/10.1007/s00226-021-01325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-021-01325-2

Navigation