Skip to main content

Part of the book series: Tree Physiology ((TREE,volume 7))

Abstract

Because of its economic and ecological importance, the genus Quercus has been relatively intensively studied for its anatomical and hydraulic characteristics, having often been testing ground for development of methods and hypotheses related to tree structure and function. However, despite long-withstanding interest, we are still far from having obtained a clear understanding of the hydraulic functioning of the species within this genus, the occurrence of trade-offs among various xylem properties and the prevalence of syndromes of characters under different environmental conditions. We conducted a review of the xylem anatomical literature of the genus Quercus , an undertaking that does not appear to have been carried out before. We also updated existing quantitative databases of vessel diameter and density, volumetric fractions of parenchyma, wood density and xylem hydraulic properties, to synthesise the main patterns of variation in the hydraulic architecture and functioning of the genus. We found that ring-porous (deciduous ) species have lower wood density , higher hydraulic conductivity, xylem that is more vulnerable to embolism and lower Huber values compared to diffuse-porous (evergreen ) species. We also report systematic differences among taxonomic groups, with species of sections Quercus and Lobatae having smaller but more numerous vessels, lower wood density , more vulnerable xylem, higher conductivity and lower Huber values as opposed to species of section Cerris . Many of these trends appeared to map onto environmental differences across the three main biomes where Quercus species are found, i.e. the temperate , the Mediterranean/semi-arid and the tropical biomes. Although limited by the coverage of the empirical data, our compilation contributes to characterise the hydraulic architecture and functioning of the genus as a function of taxonomic grouping, biome, ring-porosity and leaf phenology . Future investigations can benefit by the identification of the main factors responsible for these patterns and their likely ecological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adaskaveg JE, Gilbertson RL, Dunlap MR (1995) Effects of incubation time and temperature on in vitro selective delignification of silver leaf oak by Ganoderma colossum. App Env Microbiol 61:138–144

    CAS  Google Scholar 

  • Ahmed SA, Chun SK, Miller RB, Chong SH, Kim AJ (2011) Liquid penetration in different cells of two hardwood species. J Wood Sci 57:179–188

    Article  Google Scholar 

  • Aiba M, Nakashikuza T (2009) Architectural differences associated with adult stature and wood density in 30 temperate tree species. Funct Ecol 23:265–273

    Article  Google Scholar 

  • Alder NN, Pockman WT, Sperry JS, Nuismer S (1997) Use of centrifugal force in the study of xylem cavitation. J Exp Bot 48:665–674

    Article  CAS  Google Scholar 

  • Babos K (1993) Tyloses formation and the state of health of Quercus petraea trees in Hungary. IAWA J 14:239–243

    Article  Google Scholar 

  • Brodribb TJ (2009) Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity. Plant Sci 177:245–251

    Article  CAS  Google Scholar 

  • Brummer M, Arend M, Fromm J, Schlenzig A, Oßwald WF (2002) Ultrastructural changes and immunocytochemical localization of the elicitin quercinin in Quercus robur L. roots infected with Phytophthora quercina. Phys Mol Plant Path 61:109–120

    Article  CAS  Google Scholar 

  • Cai J, Tyree MT (2010) The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ 33:1059–1069

    Article  PubMed  CAS  Google Scholar 

  • Campelo F, Nabais C, Gutiérrez E, Freitas H, García-González I (2010) Vessel features of Quercus ilex L. growing under Mediterranean climate have a better climatic signal than tree-ring width. Trees 24:463–470

    Article  Google Scholar 

  • Carlquist S (2001) Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer-Verlag, Berlin Heidelberg, p 448

    Google Scholar 

  • Cavender-Bares J, Holbrook NM (2001) Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant Cell Environ 24:1243–1256

    Article  Google Scholar 

  • Cavender-Bares J, Kitajima K, Bazzaz FA (2004) Multiple trait association in relation to habitat differentiation among 17 Floridian oak species. Ecol. Monog. 74:635–662

    Article  Google Scholar 

  • Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2005) Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytol 168:597–612

    Article  CAS  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Cherubini P, Gartner BL, Tognetti R, Braker OU, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from mediterranean climates. Biol Rev 78:119–148

    Article  PubMed  Google Scholar 

  • Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177:608–626

    Article  PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Choat B, Badel E, Burlett R, Delzon S, Cochard H, Jansen S (2016) Noninvasive measurement of vulnerability to drought-induced embolism by X-Ray microtomography. Plant Physiol 170:273–282

    Article  CAS  PubMed  Google Scholar 

  • Christman MA, Sperry JS, Smith DD (2012) Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol 193:713–720

    Article  PubMed  Google Scholar 

  • Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Bréda N, Granier A, Aussenac G (1992) Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q. robur L). Ann For Sci 49:225–233

    Article  Google Scholar 

  • Cochard H, Herbette S, Barigah T, Badel E, Ennajeh M, Vilagrosa A (2010) Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique. Plant Cell Environ 33:1543–1552

    PubMed  Google Scholar 

  • Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013) Methods for measuring plant vulnerability to cavitation: a critical review. J Exp Bot 64:4779–4791

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Delzon S, Badel E (2015) X-ray microtomography (micro-CT): a reference technology for high-resolution quantification of xylem embolism in trees. Plant Cell Environ 38:201–206

    Article  CAS  PubMed  Google Scholar 

  • Cocoletzi E, Angeles G, Ceccantini G, Patrón A, Ornelas JF (2016) Bidirectional anatomical effects in a mistletoe–host relationship: Psittacanthus schiedeanus mistletoe and its hosts Liquidambar styraciflua and Quercus germana. Am J Bot 103:986–997

    Article  PubMed  Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrín E (2002) Functional groups in Quercus species derived from the analysis of pressure–volume curves. Trees 16:465–472

    Article  Google Scholar 

  • Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freeze-thaw events. Am J Bot 86:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Deflorio G, Franz E, Fink S, Schwarze FWMR (2009) Host responses in the xylem of trees after inoculation with six wood-decay fungi differing in invasiveness. Botany 87:26–35

    Article  Google Scholar 

  • Ebadzad G, Medeira C, Maia I, Martins J, Cravador A (2015) Induction of defence responses by cinnamomins against Phytophthora cinnamomi in Quercus suber and Quercus ilex subs. rotundifolia. Eur J Plant Pathol 143:705–723

    Article  CAS  Google Scholar 

  • eFloras (2008). Missouri Botanical Garden, St. Louis, MO, USA and Harvard University Herbaria, Cambridge, MA, USA. Published on the Internet. Accessed in August 2017 at http://www.efloras.org

  • Ellmore GS, Zanne AE, Orians CM (2006) Comparative sectoriality in temperate hardwoods: hydraulics and xylem anatomy. Bot J Linn Soc 150:61–71

    Article  Google Scholar 

  • Encyclopedia of Life. Published on the Internet. Accessed in August 2017 at http://www.eol.org

  • Fan D-Y, Jie S-L, Liu C-C, Zhang X-Y, Xu X-W, Zhang S-R, Xie Z-Q (2011) The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area. Tree Physiol 31:865–877

    Article  PubMed  Google Scholar 

  • Fonti P, Heller O, Cherubini P, Rigling A, Arend M (2013) Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biol 15:210–219

    Article  PubMed  Google Scholar 

  • Friedrich M, Remmele S, Kromer B, Hofmann J, Spurk M, Kaiser KF, Orcel C, Küppers M (2004) The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46:1111–1122

    Article  CAS  Google Scholar 

  • Fromm JH, Sautter I, Matthies D, Kremer J, Schumacher P, Ganter C (2001) Xylem water content and wood density in spruce and oak trees detected by high-resolution Computed Tomography. Plant Physiol 127:415–426

    Article  CAS  Google Scholar 

  • Gea-Izquierdo G, Martín-Benito D, Cherubini P, Cañellas I (2009) Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Ann For Sci 66:802–814

    Article  Google Scholar 

  • Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao K-F et al (2016) Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol 209:123–136

    Article  CAS  PubMed  Google Scholar 

  • Google Scholar. Published on the Internet. Accessed in August 2017 at https://scholar.google.com

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecol 126:457–461

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • Hacke UG, Jacobsen AL, Pratt RB (2009) Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis. Plant Cell and Environ 32:1324–1333

    Article  CAS  Google Scholar 

  • Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB (2015) The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems. New Phytol 205:116–127

    Article  PubMed  Google Scholar 

  • Haneca K, Cufar K, Beeckman H (2009) Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. J Arch Sc 36:1–11

    Article  Google Scholar 

  • Hélardot (1987 onwards) Published on the Internet. Accessed in August 2017 at http://oaks.of.the.world.free.fr/liste.htm

  • Hargrave KR, Kolb KJ, Ewers FW, Davis SD (1994) Conduit diameter and drought induced embolism in Salvia mellifera Greene (Labiatae). New Phytol 126:695–705

    Article  Google Scholar 

  • InsideWood. 2004-onwards. Published on the Internet. Accessed in August 2017 at http://insidewood.lib.ncsu.edu/search

  • Jacobs K (2013) The hydraulic system of Quercus species in relation to water availability. MSc thesis (promoter: Koedam N, co-promoters: Robert EMR, Beeckman H), Vrije Universiteit Brussel, Brussels, Belgium, 113 pp

    Google Scholar 

  • Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SD (2005) Do xylem fibers affect vessel cavitation resistance? Plant Physiol 139:546–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen AL, Pratt RB, Ewers FW, Davis SD (2007) Cavitation resistance among 26 chaparral species of southern California. Ecol Monogr 77:99–115

    Article  Google Scholar 

  • Jacobsen AL, Brandon Pratt R, Tobin MF, Hacke UG, Ewers FW (2012) A global analysis of xylem vessel length in woody plants. Am J of Bot 99:1583–1591

    Article  Google Scholar 

  • Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96:409–419

    Article  PubMed  Google Scholar 

  • Jansen S, Schuldt B, Choat B (2015) Current controversies and challenges in applying plant hydraulic techniques. New Phytol 205:961–964

    Article  PubMed  Google Scholar 

  • Johnson DM, Brodersen CR, Reed M, Domec JC, Jackson RB (2014) Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi-arid habitat. Ann Bot 13:617–627

    Article  Google Scholar 

  • Jupa R, Plavcová L, Gloser V, Jansen S (2016) Linking xylem water storage with anatomical parameters in five temperate tree species. Tree Phys 36:756–769

    Article  Google Scholar 

  • Kim JS, Daniel G (2016a) Distribution of phenolic compounds, pectins and hemicelluloses in mature pit membranes and its variation between pit types in English oak xylem (Quercus robur). IAWA J 37:402–419

    Article  Google Scholar 

  • Kim JS, Daniel G (2016b) Variations in cell wall ultrastructure and chemistry in cell types of earlywood and latewood in English oak (Quercus robur). IAWA J 37:383–401

    Article  Google Scholar 

  • Kim NH, Hanna RB (2006) Morphological characteristics of Quercus variabilis charcoal prepared at different temperatures. Wood Sci Technol 40:392–401

    Article  CAS  Google Scholar 

  • Kitin P, Funada R (2016) Earlywood vessels in ring-porous trees become functional for water transport after bud burst and before the maturation of the current-year leaves. IAWA J 37:315–331

    Article  Google Scholar 

  • Knops JMH, Koenig WD (1994) Water use strategies of five sympatric species of Quercus in central coastal California. Madroño 41:290–301

    Google Scholar 

  • Kuroda K (2001) Responses of Quercus sapwood to infection with the pathogenic fungus new wilt disease vectored by the ambrosia beetle Platypus quercivorus. J Wood Sci 47:425–429

    Article  Google Scholar 

  • Leal S, Sousa VB, Vicelina B, Pereira H (2006) Within and between-tree variation in the biometry of wood rays and fibres in cork oak (Quercus suber L.). Wood Sci Technol 40:585–597

    Article  CAS  Google Scholar 

  • Lei H, Milota MR, Gartner BL (1996) Between- and within-tree variation in the anatomy and specific gravity of wood in Oregon white oak (Quercus garryana Dougl). IAWA J 17:445–461

    Article  Google Scholar 

  • Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011) Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190:709–723

    Article  PubMed  Google Scholar 

  • Limousin J-M, Longepierre D, Huc R, Rambal S (2010) Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term throughfall exclusion. Tree Physiol 30:1026–1036

    Article  PubMed  Google Scholar 

  • Lloret F, Siscart D, Dalmases C (2004) Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Global Change Biol 10:2092–2099

    Article  Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M (2007) The relevance of xylem network structure for plant hydraulic efficiency and safety. J Theoret Biol 247:788–803

    Article  Google Scholar 

  • Lo Gullo MA, Salleo S (1993) Different vulnerabilities of Quercus ilex L. to freeze- and summer drought-induced xylem embolism: an ecological interpretation. Plant Cell Environ 16:511–519

    Article  Google Scholar 

  • Lo Gullo MA, Salleo S, Piaceri EC, Rosso R (1995) Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ 18:661–669

    Article  Google Scholar 

  • Martínez-Cabrera HI, Jones CS, Espino S, Schenk HJ (2009) Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. Am J Bot 96:1388–1398

    Article  PubMed  Google Scholar 

  • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29

    Article  PubMed  Google Scholar 

  • Martínez‐Vilalta J, Mencuccini M, Vayreda J, Retana J (2010) Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. J Ecol 98:1462–1475

    Google Scholar 

  • Martínez-Vilalta J, Mencuccini M, Álvarez X, Camacho J, Loepfe L, Piñol J (2012) Spatial distribution and packing of xylem conduits. Am J Bot 99:1189–1196

    Article  PubMed  Google Scholar 

  • Martin-StPaul NK, Longepierre D, Huc R, Delzon S, Burlett R, Joffre R, Rambal S, Cochard H (2014) How reliable are methods to assess xylem vulnerability to cavitation? The issue of ‘open vessel’artifact in oaks. Tree Phys 34:894–905

    Article  CAS  Google Scholar 

  • McElrone AJ, Pockman WT, Martínez-Vilalta J, Jackson RB (2004) Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol 163:507–517

    Article  Google Scholar 

  • Medeira C, Quartin V, Maia I, Diniz I, Matos MC, Semedo JN, Scotti-Campos P, Ramalho JC, Pais IP, Ramos P, Melo E (2012) Cryptogein and capsicein promote defence responses in Quercus suber against Phytophthora cinnamomi infection. Eur J Plant Pathol 134:145–159

    Article  CAS  Google Scholar 

  • Melcher PJ, Michele Holbrook N, Burns MJ, Zwieniecki MA, Cobb AR, Brodribb TJ, Choat B, Sack L (2012) Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods Ecol Evol 3:685–694

    Article  Google Scholar 

  • Mencuccini M, Martínez-Vilalta J, Piñol J, Loepfe L, Burnat M, Alvarez X, Camacho J, Gil D (2010) A quantitative and statistically robust method for the determination of xylem conduit spatial distribution. Am J Bot 97:1247–1259

    Article  PubMed  Google Scholar 

  • Metcalfe CR, Chalk L (1983) Anatomy of the dicotyledons, vol II. Clarendon Press, Oxford, UK, Wood structure and conclusions of the general introduction, p 1500

    Google Scholar 

  • Miles PD, Smith WB (2009) Specific gravity and other properties of wood and bark for 156 tree species found in North America. USDA For Serv, Northern Exp. St., Research Note NRS-38, p 35

    Google Scholar 

  • Mirić M, Popović Z (2006) Structural damages of oak-wood provoked by some stereales–basidiomycetes decaying fungi. Wood Structure and Properties ‘06. Arbora Publishers, Zvolen, Slovakia, pp 111–115

    Google Scholar 

  • Monk CD, Imm DW, Potter RL, Parker GG (1989) A classification of the deciduous forest of eastern North America. Vegetatio 80:167–181

    Article  Google Scholar 

  • Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MAF, Martínez-Cabrera HJ, McGlinn DJ, Wheeler E, Zheng J, Ziemińska K, Jansen S (2015) A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol 209:1553–1565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morris H, Brodersen C, Francis WMR, Steven Jansen S (2016) The Parenchyma of secondary Xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Frontiers in Plant Sci 7

    Google Scholar 

  • Nardini A, Savi T, Losso A, Petit G, Pacilè S, Tromba G, Mayr S, Trifilò P, Lo Gullo MA, Salleo S (2017) X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance. New Phyt 213:1068–1075

    Article  CAS  Google Scholar 

  • Návar J (2009) Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For. Ecol. Manag. 257:427–434

    Article  Google Scholar 

  • Oberle B, Ogle K, Penagos Zuluaga JC, Sweeney J, Zanne AE (2016) A Bayesian model for xylem vessel length accommodates subsampling and reveals skewed distributions in species that dominate seasonal habitats. J Plant Hydr 3:e-003

    Google Scholar 

  • Obst JR, Sachs IB, Kuster TA (1988) The quantity and type of lignin in tyloses of bur oak (Quercus macrocarpa). Holzforschung 42:229–231

    CAS  Google Scholar 

  • Pan R, Geng J, Jing Cai J, Tyree MT (2015) A comparison of two methods for measuring vessel-length in woody plants. Plant Cell Environ 38:2519–2526

    Article  CAS  PubMed  Google Scholar 

  • Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA (2016) Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecol Lett 19:240–248

    Article  PubMed  Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. Am J Bot 87:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Preston KA, Cornwell WK, DeNoyer JL (2006) Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phyt 170:807–818

    Article  Google Scholar 

  • Safdari V, Ahmed M, Palmer J, Baig MB (2008) Identification of Iranian commercial wood with hand lens. Pak J Bot 40:1851–1864

    Google Scholar 

  • Sano Y, Jansen S (2006) Perforated pit membranes in imperforate tracheary elements of some angiosperms. Ann Bot 97:1045–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Sano Y, Ohta T, Jansen S (2008) The distribution and structure of pits between vessels and imperforate tracheary elements in angiosperm woods. IAWA J 29:1–15

    Article  Google Scholar 

  • Schenk HJ, Steppe K, Jansen S (2015) Nanobubbles: a new paradigm for air-seeding in xylem. Trends Plant Sci 20:199–205

    Article  CAS  PubMed  Google Scholar 

  • Schmitt U, Liese W (1993) Response of xylem parenchyma by suberization in some hardwoods after mechanical injury. Trees 8:23–30

    Google Scholar 

  • Schmitt U, Liese W (1995) Wound reactions in the xylem of some hardwoods. Drevarsky Vyskum 40:1–10

    Google Scholar 

  • Schwilk DW, Brown TE, Lackey R, Willms J (2016) Post-fire resprouting oaks (genus: Quercus) exhibit plasticity in xylem vulnerability to drought. Plant Ecol 217:697–710

    Article  Google Scholar 

  • Siau JF (1984) Transport processes in wood. Springer Verlag, Berlin-Heidelberg-New York, p 245

    Book  Google Scholar 

  • Sohara K, Vitasb A, Läänelaid A (2012) Sapwood estimates of pedunculate oak (Quercus robur L.) in eastern Baltic. Dendrochronologia 30:49–56

    Article  Google Scholar 

  • Sorz J, Hietz P (2006) Gas diffusion through wood: implications for oxygen supply. Trees 20:34–41

    Article  Google Scholar 

  • Sousa VB, Leal S, Quilhó T, Pereira H (2009) Characterization of cork oak (Quercus suber) wood anatomy. IAWA J 30:149–161

    Article  Google Scholar 

  • Sperry J, Saliendra NZ (1994) Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ:1233–1241

    Google Scholar 

  • Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol 100:605–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Tyree MT (1988) Mechanism of water stress-induced xylem embolism. Plant Physiol 88:581–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Christman MA, Torres-Ruiz JM, Taneda H, Smith DD (2012) Vulnerability curves by centrifugation: is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid?: Vulnerability curves by centrifugation. Plant Cell Environ 35:601–610

    Article  PubMed  Google Scholar 

  • Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, Love DM (2017) Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ 40:816–830

    Article  CAS  PubMed  Google Scholar 

  • Spicer R, Holbrook NM (2005) Within-stem oxygen concentration and sap flow in four temperate tree species: does long-lived xylem parenchyma experience hypoxia? Plant Cell Environ 28:192–201

    Article  Google Scholar 

  • Spicer R, Holbrook NM (2007) Parenchyma cell respiration and survival in secondary xylem: does metabolic activity decline with cell age? Plant Cell Environ 30:934–943

    Article  CAS  PubMed  Google Scholar 

  • Stokke DD, Manwiller FG (1994) Proportions of wood elements in stem, branch, and root wood of black oak (Quercus velutina). IAWA J 15:301–310

    Article  Google Scholar 

  • Taneda H, Sperry JS (2008) A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiol 28:1641–1651

    Article  PubMed  Google Scholar 

  • The Plant List. Version 1.1 (2013). Published on the Internet. Accessed in August 2017 at http://www.theplantlist.org

  • The Wood Database. Published on the Internet. Accessed in August 2017 at http://www.wood-database.com

  • Torres-Ruiz JM, Jansen S, Choat B, McElrone A, Cochard H, Brodribb TJ, Badel E, Burlett R, Bouche PS, Brodersen C et al (2015) Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension. Plant Physiol 167:40–43

    Article  CAS  PubMed  Google Scholar 

  • Trifilò P, Raimondo F, Lo Gullo MA, Barbera PM, Salleo S, Nardini A (2014) Relax and refill: xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low PLC values. Plant Cell Environ 37:2491–2499

    Article  PubMed  CAS  Google Scholar 

  • Trifilò P, Nardini A, Gullo MA, Barbera PM, Savi T, Raimondo F (2015) Diurnal changes in embolism rate in nine dry forest trees: relationships with species-specific xylem vulnerability, hydraulic strategy and wood traits. Tree Phys 35:694–705

    Article  CAS  Google Scholar 

  • Tropicos. Published on the Internet. Missouri Botanical Garden. Wikimedia Foundation. Accessed in August 2017 at http://www.tropicos.org

  • Tyree MH, Cochard H (1996) Summer and winter embolism in oaks: impact on water relations. Ann Sc For 53:173–180

    Article  Google Scholar 

  • Tyree MH, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Article  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Biol 40:19–36

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, New York

    Book  Google Scholar 

  • Venturas MD, Mackinnon ED, Jacobsen AL, Pratt RB (2015) Excising stem samples underwater at native tension does not induce xylem cavitation. Plant Cell Environ 38:1060–1068

    Article  CAS  PubMed  Google Scholar 

  • Venturas MD, Rodriguez-Zaccaro FD, Percolla MI, Crous CJ, Jacobsen AL, Pratt RB (2016) Single vessel air injection estimates of xylem resistance to cavitation are affected by vessel network characteristics and sample length (F Meinzer, Ed.). Tree Physiol 36:1247–1259

    Article  PubMed  Google Scholar 

  • Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrin E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024

    Article  CAS  PubMed  Google Scholar 

  • Villar-Salvador P, Castro-Díez P, Pérez-Rontomé C, Montserrat-Martí G (1997) Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees 12:90–96

    Google Scholar 

  • Wang R, Zhang L, Zhang S, Cai J, Tyree MT (2014) Water relations of Robinia pseudoacacia L.: do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia? Plant Cell Environ 37:2667–2678

    Article  PubMed  Google Scholar 

  • Wikipedia: The free encyclopedia. Published on the Internet. Wikimedia Foundation, Inc. Accessed in August 2017 at https://www.wikipedia.org

  • Wikipedia—List of Quercus species. Published on the Internet. Accessed in August 2017 at https://en.wikipedia.org/wiki/List_of_Quercus_species

  • Wheeler EA, Baas P, Gasson PE (1989) IAWA list of microscopic features for hardwood identification. IAWA Bulletin n.s. 10:219–332

    Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812

    Article  Google Scholar 

  • Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013) Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ 36:1938–1949

    CAS  PubMed  Google Scholar 

  • Whitehead D, Jarvis PG (1981) Coniferous forests and plantations. In: Kozlowski TT (ed) Water deficits and plant growth, Vol. VI, Academic Press, New York, pp. 49–152

    Google Scholar 

  • Wilson R (2010) The longest tree‐ring chronologies in the world, summarised by Rob Wilson. Published on the Internet. Accessed in August 2017 at http://lustiag.pp.fi/data/Advance/LongChronologies.pdf

  • Yilmaz M, Serdar B, Lokman A, Usta A (2008) Relationships between environmental variables and wood anatomy of Quercus pontica C. Koch (Fagaceae). Fresenius Environ Bull 17:902–910

    CAS  Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Global wood density database. Dryad. Identifier: http://hdl.handle.net/10255/dryad.235

  • Zanne AE, Westoby M, Falster DS, Ackerley DD, Loarie SR, Arnold SEJ, Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215

    Article  PubMed  Google Scholar 

  • Zhang YJ, Holbrook NM (2014) The stability of xylem water under tension: a long, slow spin proves illuminating. Plant, Cell Environ 37:2652–2653

    Article  PubMed  Google Scholar 

  • Zieminska K, Butler DW, Gleason SM, Wright IJ, Westoby M (2013) Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 5: plt046

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer-Verlag, Berlin, Heidelberg, New York, Tokio, p 143

    Book  Google Scholar 

Download references

Acknowledgements

We thank Kristoffel Jacobs for his help with data preparation. M.M. and J.M.V . are supported by the Spanish Government (grant CGL2013-46808-R), E.M.R.R. by the EU (Marie Skłodowska-Curie Fellowship—No 659191) and by the Research Foundation—Flanders (FWO, Belgium). J.M.V . benefits from an ICREA Academia award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth M. R. Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robert, E.M.R., Mencuccini, M., Martínez-Vilalta, J. (2017). The Anatomy and Functioning of the Xylem in Oaks. In: Gil-Pelegrín, E., Peguero-Pina, J., Sancho-Knapik, D. (eds) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.. Tree Physiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-69099-5_8

Download citation

Publish with us

Policies and ethics