Skip to main content

Advertisement

Log in

Hygromechanical properties of grenadilla wood (Dalbergia melanoxylon)

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Grenadilla wood (Dalbergia melanoxylon Guill. & Perr.) is a hardwood species found in Tanzania, Mozambique, and other countries in the tropical part of Africa, especially in the Eastern-Central region. Thanks to its high density and good hygroscopic stability, it is used in the making of various musical instruments and fine furniture. Due to the scarcity of published data on this wood species, more studies on its properties are needed to improve its processing and use, and even to search for sustainable alternative materials as its trade is increasingly limited by new regulations. This work is focused on the hygromechanical properties, which hold an important role in the applications of this wood: diffusion coefficients and adsorption–desorption curve (both measured at \(T = 20\,^{\circ }\hbox {C}\)), swelling–shrinkage coefficients and full orthotropic elastic constants using an ultrasonic method. Results show that grenadilla wood possesses small water diffusion coefficients (from \(1.54\pm 0.49\times 10^{-7}\,\hbox {cm}^2/\hbox {s}\) in T direction to \(4.58\pm 0.84\times 10^{-7}\,\hbox {cm}^{2}/\hbox {s}\) in L direction), which is probably related to its high density (\(1250.0\pm 26.2\,\hbox {kg}/\hbox {m}^{2}\)); unique equilibrium moisture content (sorption) curve with a lower fiber saturation point (\(0.173\pm 0.003\)); smaller swelling–shrinkage coefficients (\(0.20\pm 0.03\) and \(0.32\pm 0.05\) in T and R directions, respectively); and elastic constants lower in the longitudinal direction (\(15.56\pm 1.79\) GPa) and higher in the transverse ones (\(5.10\pm 0.46\) GPa and \(4.05\pm 0.35\) GPa in R and T directions, respectively) than what could be expected with a standard model based on the density only. Several explanations were described here, from the effects of a high extractive content to the possibility of a high microfibril and/or fiber angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

L:

Longitudinal direction

R:

Radial direction

T:

Tangential direction

c :

Diffusing concentration

\(c_i\) :

Initial diffusing concentration

\(c_f\) :

Final diffusing concentration

\(M_t\) :

Total change of moisture content at a given time t

\(M_f\) :

Total final change of moisture content

[C]:

Stiffness matrix

\(C_{ij}\) :

Component of stiffness matrix

[S]:

Compliance matrix, where \([C] = [S]^{-1}\)

DL:

A code designating a diffusion sample for L direction

DR:

A code designating a diffusion sample for R direction

DT:

A code designating a diffusion sample for T direction

D :

Coefficient of diffusion, written here as \(\hbox {cm}^2/\hbox {s}\)

[D]:

Matrix of diffusion coefficients, which consists of D for diffusion in L, R and T

\(D_0\) :

Constant diffusion coefficient D

\(D_\mathrm{lin}\) :

Coefficient of diffusion whose values vary linearly with W

\(D_e\) :

Coefficient of diffusion whose values vary exponentially with W

EMC:

Equilibrium moisture content (without unit)

\(\gamma\) :

Swelling–shrinkage coefficient (without unit)

\(\gamma _\mathrm{R}, \gamma _\mathrm{T}\) :

Swelling–shrinkage coefficient for R and T directions, respectively

\(\varGamma _V\) :

Volume swelling coefficient

S:

A code designating a sample as a swelling–shrinkage sample

\(\alpha , \phi\) :

Intrinsic thermodynamic full-cycle curve parameters (unitless)

\(A, \beta , K\) :

Empirical partial-cycle curve parameters (unitless)

\(\text {V}\) :

Volume (\(\hbox {m}^3\))

V :

Wave propagation velocity (m/s)

\(V_\theta\) :

Wave propagation velocity measured at angle \(\theta\) (m/s)

W :

Water/moisture content of wood (unitless)

\(W_s\) :

Fiber saturation point of wood (unitless)

\(W_t\) :

Moisture content of wood sample at time t, Eq. 12

\(W_i\) :

Initial moisture content (unitless), Eqs. 3, 4 and 12

\(W_f\) :

Final moisture content (unitless), Eqs. 3, 4 and 12

\(\zeta _x\) :

Hydric capacity of the isothermal envelope for adsorption or desorption, Eq. 7

h :

Relative humidity or RH (unitless)

\(h_i\) :

Initial relative humidity (unitless), referred to Eqs.  34

\(h_f\) :

Final relative humidity (unitless), referred to Eqs.  34

m :

Mass in g

pb :

Empirical constants to be estimated (no unit), referred to in Eq. 15

\(\mu\) :

Mean values

\(\delta\) :

Standard deviation values

k :

Empirical constant to be estimated (no unit) from Eq. 16

l :

Thickness of the sample (mm).

\(\rho\) :

Density of the wood (\(\hbox {kg/m}^{3}\))

T :

Temperature (\(^{\circ }\hbox {C}\))

h :

Relative humidity (unitless)

X :

Half-thickness of wood sample used in the diffusion experiments (mm)

Y :

Dimension of the sample in particular direction (can be in R, L or T), in mm.

\(Y_i\) :

Initial dimension of the sample in particular direction, in mm, measured at \(W_i\)

\(Y_f\) :

Initial dimension of the sample in particular direction, in mm, measured at \(W_f\)

\(\epsilon\) :

Mechanical or hygroscopic strain of wood

\(\xi\) :

The weighed parameter for partial-cycle curve, referred to Eqs. 36

\(\xi _a\) :

The weighed parameter for partial-cycle curve during adsorption (\(h_f > h_i\))

\(\xi _d\) :

The weighed parameter for partial-cycle curve during desorption (\(h_f < h_i\))

sse:

Sum of squared error

References

  • Agoua E, Perre P (2010) Mass transfer in wood: identification of structural parameters from diffusivity and permeability measurements. J Porous Med 13(11):1017–1024. https://doi.org/10.1615/JPorMedia.v13.i11.80

    Article  Google Scholar 

  • Ashman RB, Cowin SC, Van Buskirk WC, Rice JC (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17(5):349–361. https://doi.org/10.1016/0021-9290(84)90029-0

    Article  CAS  PubMed  Google Scholar 

  • Astley RJ, Stol KA, Harrington JJ (1998) Modelling the elastic properties of softwood. Holz Roh- Werkst 56(1):43–50. https://doi.org/10.1007/s001070050262

    Article  Google Scholar 

  • Bachtiar EV, Sanabria SJ, Mittig JP, Niemz P (2017) Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques. Wood Sci Technol 51(1):47–67. https://doi.org/10.1007/s00226-016-0851-z

    Article  CAS  Google Scholar 

  • Bader TK, Hofstetter K, Eberhardsteiner J, Keunecke D (2012) Microstructure-stiffness relationships of common yew and Norway spruce. Strain 48(4):306–316. https://doi.org/10.1111/j.1475-1305.2011.00824.x

    Article  CAS  Google Scholar 

  • Ball SMJ (2004) Stocks and exploitation of East African blackwood (Dalbergia melanoxylon): a flagship species for Tanzania’s miombo woodlands? Oryx 38(3):266–272. https://doi.org/10.1017/S0030605304000493

    Article  Google Scholar 

  • Berry SL, Roderick ML (2005) Plant-water relations and the fibre saturation point. New Phytol 168(1):25–37

    Article  CAS  Google Scholar 

  • Brancheriau L, Baillères H (2002) Natural vibration analysis of clear wooden beams: a theoretical review. Wood Sci Technol 36(4):347–365

    Article  CAS  Google Scholar 

  • Brillouin L (2013) Wave propagation and group velocity. Academic Press, Cambridge

    Google Scholar 

  • Brémaud I (2012) Acoustical properties of wood in string instruments soundboards and tuned idiophones: biological and cultural diversity. J Acoust Soc Am 131(1):807–818. https://doi.org/10.1121/1.3651233

    Article  PubMed  Google Scholar 

  • Bucur V (2006) Acoustics of wood. Springer, Berlin

    Book  Google Scholar 

  • Bucur V, Archer RR (1984) Elastic constants for wood by an ultrasonic method. Wood Sci Technol 18(4):255–265. https://doi.org/10.1007/BF00353361

    Article  Google Scholar 

  • Camara VC, Laux D, Arnould O (2010) Enhanced multiple ultrasonic shear reflection method for the determination of high frequency viscoelastic properties. Ultrasonics 50(7):710–715. https://doi.org/10.1016/j.ultras.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet J, De Wit M, Janssen H (2005) Hysteresis and moisture buffering of wood. In: Symposium of building physics in the nordic countries, Citeseer, pp 55–62

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. For Prod J 44(5):43

    Google Scholar 

  • Cegla FB, Cawley P, Allin J, Davies J (2011) High-temperature (\(>500^{\circ }\text{ C }\)) wall thickness monitoring using dry-coupled ultrasonic waveguide transducers. IEEE Trans Ultrason Ferroelectr Freq Control 58(1):156–167. https://doi.org/10.1109/TUFFC.2011.1782

    Article  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12(4):351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x

    Article  PubMed  Google Scholar 

  • Chen Y, Choong ET (1994) Determining the effect of extractives on moisture movement using a “continuous” measuring system. Wood Fiber Sci 26(3):390–396

    CAS  Google Scholar 

  • Choong ET (1969) Effect of extractives on shrinkage and other hygroscopic properties of ten southern pine woods. Wood Fiber Sci 1(2):124–133

    Google Scholar 

  • Chudnoff M (1984) Tropical timbers of the world. U.S. Department of Agriculture, Forest Service, Washington

    Google Scholar 

  • Crank J (1979) The mathematics of diffusion, 2nd edn. Oxford Science Publications, Oxford University Press, Oxford (oCLC: 554098354)

    Google Scholar 

  • Détienne P (1990) Les bois exotiques anciens d’ébénisterie et leur identification (Ancient exotic woods of cabinet-making and their identification). BOIS & FORETS DES TROPIQUES 223:69–76

    Google Scholar 

  • Donnelly DM, O’Reilly J, Whalley WB (1975) Neoflavanoids of Dalbergia melanoxylon. Phytochemistry 14(10):2287–2290

    Article  CAS  Google Scholar 

  • Eitelberger J, Hofstetter K (2010) Multiscale homogenization of wood transport properties: diffusion coefficients for steady-state moisture transport. Wood Mater Sci Eng 5(2):97–103. https://doi.org/10.1080/17480272.2010.489650

    Article  Google Scholar 

  • Fernández FG, Esteban LG, de Palacios P, Simón C, García-Iruela A, de la Fuente J (2014) Sorption and thermodynamic properties of Terminalia superba Engl. & Diels and Triplochiton scleroxylon K. Schum. through the 15, 35 and 50\(^{\circ }\)C sorption isotherms. Eur J Wood Prod 72(1):99–106. https://doi.org/10.1007/s00107-013-0752-x

    Article  Google Scholar 

  • François M, Geymonat G, Berthaud Y (1998) Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements. Int J Solids Struct 35(31):4091–4106. https://doi.org/10.1016/S0020-7683(97)00303-X

    Article  Google Scholar 

  • Glass SV, Zelinka SL (2010) Moisture relations and physical properties of wood. Wood handbook: wood as an engineering material: chapter 4 Centennial ed General technical report FPL; GTR-190 Madison, WI: US Dept of Agriculture, Forest Service, Forest Products Laboratory, 2010: p 41-419 190:4–1

  • Gonçalves R, Trinca AJ, Pellis BP (2014) Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Sci Technol 48(2):269–287. https://doi.org/10.1007/s00226-013-0598-8

    Article  CAS  Google Scholar 

  • Guitard D, El Amri F (1987) Modèles prévisionnels de comportement élastique tridimensionnel pour les bois feuillus et les bois résineux (Predictive models of three-dimensional elastic behaviour for hardwoods and softwoods). Ann For Sci 44(3):335–358. https://doi.org/10.1051/forest:19870305

    Article  Google Scholar 

  • Gérard J, Guibal D, Paradis S, Cerre JC (2017) Tropical Timber Atlas: Technological characteristics and uses. éditions Quæ, Versailles (oCLC: 1022786485)

    Google Scholar 

  • Hailwood A, Horrobin S (1946) Absorption of water by polymers: analysis in terms of a simple model. T Faraday Soc 42:B084–B092

    Article  Google Scholar 

  • Hassold S, Ii PPL, Bauert MR, Razafintsalama A, Ramamonjisoa L, Widmer A (2016) DNA barcoding of malagasy rosewoods: towards a molecular identification of CITES-listed Dalbergia species. PLoS ONE 11(6):e0157881. https://doi.org/10.1371/journal.pone.0157881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hein PRG, Silva JRM, Brancheriau L (2013) Correlations among microfibril angle, density, modulus of elasticity, modulus of rupture and shrinkage in 6-year-old Eucalyptus urophylla \(\times\) E. grandis. Maderas Ciencia y tecnología 15(2):171–182. https://doi.org/10.4067/S0718-221X2013005000014

    Article  Google Scholar 

  • Hillis WE (1971) Distribution, properties and formation of some wood extractives. Wood Sci Technol 5(4):272–289. https://doi.org/10.1007/BF00365060

    Article  CAS  Google Scholar 

  • Innes J (2010) Madagascar rosewood, illegal logging and the tropical timber trade. Madagascar Conserv Dev. https://doi.org/10.4314/mcd.v5i1.57335

    Article  Google Scholar 

  • IUCN (1998) Dalbergia melanoxylon: World Conservation Monitoring Centre: The IUCN Red List of Threatened Species 1998: e.T32504a9710439. Tech. rep., International Union for Conservation of Nature. https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32504A9710439.en, type: dataset

  • Jankowska A, Drożdżek M, Sarnowski P, Horodeński J (2016) Effect of extractives on the equilibrium moisture content and shrinkage of selected tropical wood species. BioResources 12(1):597–607. https://doi.org/10.15376/biores.12.1.597-607

    Article  CAS  Google Scholar 

  • Jannot Y, Kanmogne A, Talla A, Monkam L (2006) Experimental determination and modelling of water desorption isotherms of tropical woods: afzelia, ebony, iroko, moabi and obeche. Holz Roh Werkst 64(2):121–124. https://doi.org/10.1007/s00107-005-0051-2

    Article  CAS  Google Scholar 

  • Kohlhauser C, Hellmich C, Vitale-Brovarone C, Boccaccini AR, Rota A, Eberhardsteiner J (2009) Ultrasonic characterisation of porous biomaterials across different frequencies. Strain 45(1):34–44. https://doi.org/10.1111/j.1475-1305.2008.00417.x

    Article  Google Scholar 

  • Kulasinski K (2015) Physical and mechanical aspects of moisture adsorption in wood biopolymers investigated with atomistic simulations. Ph.D. thesis, ETH Zurich

  • Lancaster C, Espinoza E (2012) Analysis of select Dalbergia and trade timber using direct analysis in real time and time-of-flight mass spectrometry for CITES enforcement. Rapid Commun Mass Spectrom 26(9):1147–1156. https://doi.org/10.1002/rcm.6215

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Peng L, Lyu S, Lyu J (2020) Properties of common tropical hardwoods for fretboard of string instruments. J Wood Sci 66(1):1–11

    Article  Google Scholar 

  • Longo R, Laux D, Pagano S, Delaunay T, Le Clézio E, Arnould O (2018) Elastic characterization of wood by resonant ultrasound spectroscopy (rus): a comprehensive study. Wood Sci Technol 52:383–402. https://doi.org/10.1007/s00226-017-0980-z

    Article  CAS  Google Scholar 

  • Lowe AJ, Dormontt EE, Bowie MJ, Degen B, Gardner S, Thomas D, Clarke C, Rimbawanto A, Wiedenhoeft A, Yin Y, Sasaki N (2016) Opportunities for improved transparency in the timber trade through scientific verification. BioScience 66(11):990–998. https://doi.org/10.1093/biosci/biw129

    Article  Google Scholar 

  • Malimbwi RE, Luoga EJ, Hofstad O, Mugasha AG, Valen JS (2000) Prevalence and standing volume of Dalbergia melanoxylon in coastal and inland sites of southern Tanzania. J Trop For Sci 12(2):336–347

    Google Scholar 

  • Maroulis Z, Tsami E, Marinos-Kouris D, Saravacos G (1988) Application of the GAB model to the moisture sorption isotherms for dried fruits. J Food Eng 7(1):63–78

    Article  Google Scholar 

  • Mathworks (2018a) MATLAB and curve fitting toolbox release 2018b. Mathworks, Natick, Massachusetts, USA

  • Mathworks (2018b) MATLAB and PDE toolbox release 2018b. Mathworks, Natick, Massachusetts, USA

  • Mathworks (2018c) MATLAB and signal processing toolbox release 2018b. Mathworks, Natick, Massachusetts, USA

  • Merakeb S, Dubois F, Petit C (2009) Modeling of the sorption hysteresis for wood. Wood Sci Technol 43(7):575. https://doi.org/10.1007/s00226-009-0249-2

    Article  CAS  Google Scholar 

  • Nugroho WD, Marsoem SN, Yasue K, Fujiwara T, Nakajima T, Hayakawa M, Nakaba S, Yamagishi Y, Jin HO, Kubo T, Funada R (2012) Radial variations in the anatomical characteristics and density of the wood of Acacia mangium of five different provenances in Indonesia. J Wood Sci 58(3):185–194. https://doi.org/10.1007/s10086-011-1236-4

    Article  Google Scholar 

  • Nzokou P, Kamdem DP (2004) Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina), and red pine (Pinus resinosa). Wood Fiber Sci 36(4):483–492

    CAS  Google Scholar 

  • Obataya E, Yamauchi H (2012) Applicability of Laminated Veneer Cylinder to Sustainable Production of Woodwind Instruments. Proc 2012 IUFRO (International Union of Forest Reserch Organisation, Copenhagen 2012)

  • Ogawa S (2018) Impact of imported Chinese furniture on the local furniture sector in Arusha City, Tanzania: focusing on the strategies of furniture-makers for using indigenous timber species. Afr Study monogr Suppl Issue 55:27–47

    Google Scholar 

  • Olek W, Weres J (2007) Effects of the method of identification of the diffusion coefficient on accuracy of modeling bound water transfer in wood. Transp Porous Media 66(1–2):135–144. https://doi.org/10.1007/s11242-006-9010-6

    Article  CAS  Google Scholar 

  • Olek W, Perré P, Weres J (2005) Inverse analysis of the transient bound water diffusion in wood. Holzforschung. https://doi.org/10.1515/HF.2005.007

    Article  Google Scholar 

  • Orfanidis S (2016) Electromagnetic waves and antennas, vol 1. Sophocles J. Orfanidis, Hardcover

    Google Scholar 

  • Parr CS, Wilson N, Leary P, Schulz K, Lans K, Walley L, Hammock J, Goddard A, Rice J, Studer M, Holmes J, Corrigan R Jr (2014) The encyclopedia of life v2: Providing global access to knowledge about life on earth. Biodivers Data J 2:e1079. https://doi.org/10.3897/BDJ.2.e1079

    Article  Google Scholar 

  • Pederson CR (1990) Combined heat and moisture transfer in building constructions. Ph.D. thesis, Technical University of Denmark

  • Randriamamonjy TA, Handayani IGAKR, Setyono P (2016) Inefficiency of forestry regulations and management applicability on rosewood (Dalbergia. Spp) exploitation in madagascar: case study of Marojejy and Masoala National Parks. RW J Arts Sci Commer 7(3):41–47. https://doi.org/10.18843/rwjasc/v7i3/05

    Article  Google Scholar 

  • Redman AL, Bailleres H, Turner I, Perré P (2012) Mass transfer properties (permeability and mass diffusivity) of four australian hardwood species. BioResources 7(3):3410–3424

    Google Scholar 

  • Remy O (2017) Rosewood democracy. In: Williams A, Le Billon P (eds) Corruption, natural resources and development. Edward Elgar Publishing, Cheltenham, pp 142–153. https://doi.org/10.4337/9781785361203.00019

    Chapter  Google Scholar 

  • Rode C, Clorius CO (2004) Modeling of moisture transport in wood with hysteresis and temperature-dependent sorption characteristics. In: Proceedings of the performance of exterior envelopes of whole buildings IX: international conference, 2004, Clearwater, Florida

  • Rowell RM, Banks WB (1985) Water repellency and dimensional stability of wood. Tech. Rep. FPL-GTR-50, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI. https://doi.org/10.2737/FPL-GTR-50

  • Siau JF (1984) Transport processes in wood. Springer, Berlin (oCLC: 840294315)

    Book  Google Scholar 

  • Simo-Tagne M, Rémond R, Rogaume Y, Zoulalian A, Bonoma B (2016a) Sorption behavior of four tropical woods using a dynamic vapor sorption standard analysis system. Maderas Ciencia y tecnología 18(3):403–412, publisher: Universidad del Bío-Bío

  • Simo-Tagne M, Rémond R, Rogaume Y, Zoulalian A, Perré P (2016b) Characterization of sorption behavior and mass transfer properties of four central africa tropical woods: Ayous, Sapele, Frake, Lotofa. Maderas, Cienc tecnol 18(1):207–226. https://doi.org/10.4067/S0718-221X2016005000020

    Article  CAS  Google Scholar 

  • Simo-Tagne M, Bennamoun L, Léonard A, Rogaume Y (2019) Determination and modeling of the isotherms of adsorption/desorption and thermodynamic properties of obeche and lotofa using nelson’s sorption model. Heat Mass Transf 55(8):2185–2197. https://doi.org/10.1007/s00231-019-02577-2

    Article  CAS  Google Scholar 

  • Simpson WT (2001) Wood: dimensional change from moisture. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology. Elsevier, Amsterdam, pp 9627–9629. https://doi.org/10.1016/B0-08-043152-6/01743-5

    Chapter  Google Scholar 

  • Siriwat P, Nijman V (2018) Online media seizure reports: a tool to monitor CITES implementation in regulating the international rosewood trade. For Pol Econ 97:67–72. https://doi.org/10.1016/j.forpol.2018.09.004

    Article  Google Scholar 

  • Sjostrom E (1993) Wood chemistry: fundamentals and applications. Gulf Professional Publishing, Houston

    Google Scholar 

  • Snel FA, Braga JWB, da Silva D, Wiedenhoeft AC, Costa A, Soares R, Coradin VTR, Pastore TCM (2018) Potential field-deployable NIRS identification of seven Dalbergia species listed by CITES. Wood Sci Technol 52(5):1411–1427. https://doi.org/10.1007/s00226-018-1027-9

    Article  CAS  Google Scholar 

  • Sproßmann R, Zauer M, Wagenführ A (2017) Characterization of acoustic and mechanical properties of common tropical woods used in classical guitars. Results Phys 7:1737–1742. https://doi.org/10.1016/j.rinp.2017.05.006

    Article  Google Scholar 

  • Tanabe J, Ishiguri F, Tamura A, Takashima Y, Ohshima J, Iizuka K, Yokota S (2018) Within-tree radial and among-family variations in wood density, microfibril angle, and mechanical properties in Picea glehnii. Silva Fenn. https://doi.org/10.14214/sf.9914

    Article  Google Scholar 

  • Tateishi M, Kumagai T, Utsumi Y, Umebayashi T, Shiiba Y, Inoue K, Kaji K, Cho K, Otsuki K (2008) Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations. Trees 22(1):23–30. https://doi.org/10.1007/s00468-007-0165-8

    Article  Google Scholar 

  • Treanor NB (2015) China’s Hongmu Consumption Boom: Analysis of the Chinese Rosewood Trade and Links to Illegal Activity in Tropical Forested Countries. Tech. rep, Forest Trends

  • Tu LY, Brennan JN, Sauer JA (1955) Dispersion of ultrasonic pulse velocity in cylindrical rods. J Acoust Soc Am 27(3):550–555. https://doi.org/10.1121/1.1907961

    Article  Google Scholar 

  • Ugochukwu AI, Hobbs JE, Phillips PW, Kerr WA (2018) Technological solutions to authenticity issues in international trade: the case of CITES listed endangered species. Ecol Econ 146:730–739. https://doi.org/10.1016/j.ecolecon.2017.12.021

    Article  Google Scholar 

  • Van Heerden FR, Brandt EV, Roux DG (1980) Isolation and synthesis of trans- and cis-(-)-clovamides and their deoxy analogues from the bark of Dalbergia melanoxylon. Phytochemistry 19(10):2125–2129. https://doi.org/10.1016/S0031-9422(00)82207-4

    Article  Google Scholar 

  • Varnier M, Sauvat N, Ulmet L, Montero C, Dubois F, Gril J (2020) Influence of temperature in a mass transfer simulation: application to wood. Wood Sci Technol 54:943–962. https://doi.org/10.1007/s00226-020-01197-y

    Article  CAS  Google Scholar 

  • Wenbin H, Xiufang S (2013) Tropical Hardwood Flows in China: Case Studies of Rosewood and Okoumé. Tech. rep, Forest Trends

  • Yang T, Zhou H, Ma E, Wang J (2018) Effects of removal of different chemical components on moisture sorption property of Populus euramericana Cv. under dynamic hygrothermal conditions. Results Phys 10:61–68. https://doi.org/10.1016/j.rinp.2018.05.024

    Article  Google Scholar 

  • Yin X, Huang A, Zhang S, Liu R, Ma F (2018) Identification of three Dalbergia species based on differences in extractive components. Molecules 23(9):2163. https://doi.org/10.3390/molecules23092163

    Article  CAS  PubMed Central  Google Scholar 

  • Zadro MG (1975) Woods used for woodwind since the 16th Century 2: a descriptive dictionary of the principal woods mentioned. Early Music 3(3):249–251

    Article  Google Scholar 

  • Zelinka SL, Glass SV, Jakes JE, Stone DS (2016) A solution thermodynamics definition of the fiber saturation point and the derivation of a wood-water phase (state) diagram. Wood Sci Technol 50(3):443–462

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is a result of cooperation between the Laboratoire de Mécanique et Génie Civil (CNRS, Université de Montpellier), ANRT and Henri SELMER Paris under the working scheme of Ph.D. CIFRE, on which the first author was currently working during the time of the writing of this paper. Special acknowledgments are directed toward Michel Millon and Christophe Gallois from Henri SELMER Paris, Gille Camp from LMGC, Stéphane Fourtier from UMR AMAP CIRAD and Daniel Guibal from UMR BioWooEB CIRAD for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Alkadri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest during the course of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkadri, A., Jullien, D., Arnould, O. et al. Hygromechanical properties of grenadilla wood (Dalbergia melanoxylon). Wood Sci Technol 54, 1269–1297 (2020). https://doi.org/10.1007/s00226-020-01215-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-020-01215-z

Navigation