Alix S, Philippe E, Bessadok A, Lebrun L, Morvan C, Marais S (2009) Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresour Technol 100(20):4742–4749. https://doi.org/10.1016/j.biortech.2009.04.067
Article
CAS
PubMed
Google Scholar
Altgen M, Willems W, Hosseinpourpia R, Rautkari L (2018) Hydroxyl accessibility and dimensional changes of Scots pine sapwood affected by alterations in the cell wall ultrastructure during heat-treatment. Polym Degrad Stab 152:244–252. https://doi.org/10.1016/j.polymdegradstab.2018.05.005
Article
CAS
Google Scholar
Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. https://doi.org/10.1021/ja01145a126
Article
CAS
Google Scholar
Bengtsson M, Oksman K (2006) Silane crosslinked wood plastic composites: processing and properties. Compos Sci Technol 66(13):2177–2186. https://doi.org/10.1016/j.compscitech.2005.12.009
Article
CAS
Google Scholar
Bisanda ETN, Ansell MP (1991) The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Compos Sci Technol 41(2):165–178. https://doi.org/10.1016/0266-3538(91)90026-L
Article
CAS
Google Scholar
Björdal CG (2012) Microbial degradation of waterlogged archaeological wood. J Cult Herit 13(3):S118–S122. https://doi.org/10.1016/j.culher.2012.02.003
Article
Google Scholar
Björdal CG, Nilsson T, Daniel G (1999) Microbial decay of waterlogged archaeological wood found in Sweden applicable to archaeology and conservation. Int Biodeterior Biodegrad 43(1–2):63–73. https://doi.org/10.1016/S0964-8305(98)00070-5
Article
Google Scholar
Bjurhager I, Ljungdahl J, Wallström L, Gamstedt EK, Berglund LA (2010) Towards improved understanding of PEG-impregnated waterlogged archaeological wood: a model study on recent oak. Holzforschung 64(2):243–250. https://doi.org/10.1515/hf.2010.024
Article
CAS
Google Scholar
Blanchette RA (2000) A review of microbial deterioration found in archaeological wood from different environments. Int Biodeterior Biodegrad 46(3):189204. https://doi.org/10.1016/S0964-8305(00)00077-9
Article
Google Scholar
Blanchette RA (2010) Microbial degradation of wood from aquatic and terrestrial environments. In: Mitchell R, McNamara CJ (eds) Cultural heritage microbiology. Fundamental studies in conservation science. ASM Press, Washington, pp 179–218
Google Scholar
Borrega M, Kärenlampi PP (2011) Cell wall porosity in Norway spruce wood as affected by high-temperature drying. Wood Fiber Sci 43(2):206–214
CAS
Google Scholar
Broda M, Frankowski M (2017) Determination of the content of selected elements in medieval waterlogged oak wood from the Lednica Lake—a case study. Environ Sci Pollut Res 24(29):23401–23410. https://doi.org/10.1007/s11356-017-9972-7
Article
CAS
Google Scholar
Broda M, Mazela B (2017) Application of methyltrimethoxysilane to increase dimensional stability of waterlogged wood. J Cult Herit 25:149–156. https://doi.org/10.1016/j.culher.2017.01.007
Article
Google Scholar
Broda M, Popescu CM (2019) Natural decay of archaeological oak wood versus artificial degradation processes—an FT-IR spectroscopy and X-ray diffraction study. Spectrochim Acta A 209:280–287. https://doi.org/10.1016/j.saa.2018.10.057
Article
CAS
Google Scholar
Broda M, Majka J, Olek W, Mazela B (2018) Dimensional stability and hygroscopic properties of waterlogged wood treated with alkoxysilanes. Int Biodeterior Biodegrad 133:34–41. https://doi.org/10.1016/j.ibiod.2018.06.007
Article
CAS
Google Scholar
Broda M, Mazela B, Dutkiewicz A (2019a) Organosilicon compounds with various active groups as consolidants for the preservation of waterlogged archaeological wood. J Cult Herit 35:123–128. https://doi.org/10.1016/j.culher.2018.06.006
Article
Google Scholar
Broda M, Mazela B, Radka K (2019b) Methyltrimethoxysilane as a stabilising agent for archaeological waterlogged wood differing in the degree of degradation. J Cult Herit 35:129–139. https://doi.org/10.1016/j.culher.2018.06.004
Article
Google Scholar
Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. https://doi.org/10.1021/ja01269a023
Article
CAS
Google Scholar
Burr HK, Stamm AJ (1956) Diffusion in wood. USDA Forest Products Laboratory report 1674. Forest Products Laboratory, Madison, Wisconsin
Cook C, Grattan DW (1990) A method of calculating the concentration of PEG for freeze-drying waterlogged wood. In: Hoffmann P (eds) Proceedings of the 4th ICOM-Group on wet organic archaeological materials conference, pp 239–252
Curling SF, Clausen CA, Winandy JE (2002) Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown-rot decay (solid wood products). For Prod J 52(7/8):34–39
CAS
Google Scholar
Daniel G (2014) Fungal and bacterial biodegradation: white rots, brown rots, soft rots, and bacteria. In: Deterioration and protection of sustainable biomaterials. ACS symposium series. American Chemical Society, Washington, DC, pp 23–54
De Vetter L, Van den Bulcke J, Van Acker J (2010) Impact of organosilicon treatments on the wood–water relationship of solid wood. Holzforschung 64(4):463–468. https://doi.org/10.1515/hf.2010.069
Article
Google Scholar
Donath S, Militz H, Mai C (2004) Wood modification with alkoxysilanes. Wood Sci Technol 38(7):555–566. https://doi.org/10.1007/s00226-004-0257-1
Article
CAS
Google Scholar
Donath S, Militz H, Mai C (2006a) Creating water-repellent effects on wood by treatment with silanes. Holzforschung 60(1):40–46. https://doi.org/10.1515/HF.2006.008
Article
CAS
Google Scholar
Donath S, Militz H, Mai C (2006b) Treatment of wood with aminofunctional silanes for protection against wood destroying fungi. Holzforschung 60(2):210–216. https://doi.org/10.1515/HF.2006.035
Article
CAS
Google Scholar
Engelund ET, Thygesen LG, Svensson S, Hill CA (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47(1):141–161. https://doi.org/10.1007/s00226-012-0514-7
Article
CAS
Google Scholar
Esteban LG, de Palacios P, Fernández FG, Martín JA, Génova M, Fernández-Golfín JI (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1,170 ± 40 BP. Wood Sci Technol 43(7–8):679–690. https://doi.org/10.1007/s00226-009-0261-6
Article
CAS
Google Scholar
Esteban LG, De Palacios P, Fernández FG, García-Amorena I (2010) Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeterior Biodegrad 64(5):371–377. https://doi.org/10.1016/j.ibiod.2010.01.010
Article
CAS
Google Scholar
Fengel D, Wegener G (1984) Wood. Chemistry, ultrastructure, reactions. De Gruyter, Berlin
Google Scholar
Flournoy DS, Kirk TK, Highley TL (1991) Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung Int J Biol Chem Phys Technol Wood 45(5):383–388. https://doi.org/10.1515/hfsg.1991.45.5.383
CAS
Article
Google Scholar
Giudice CA, Canosa G (2017) Flame-retardant systems based on alkoxysilanes for wood protection. In: Wood in civil engineering. InTech. https://doi.org/10.5772/64916
Glass SV, Boardman CR, Zelinka SL (2017) Short hold times in dynamic vapor sorption measurements mischaracterize the equilibrium moisture content of wood. Wood Sci Technol 51(2):243–260. https://doi.org/10.1007/s00226-016-0883-4
Article
CAS
Google Scholar
Grattan DW (1982) A practical comparative study of several treatments for waterlogged wood. Stud Conserv 27(3):124–136. https://doi.org/10.1179/sic.1982.27.3.124
CAS
Article
Google Scholar
Grönqvist S, Hakala TK, Kamppuri T, Vehviläinen M, Hänninen T, Liitiä T, Maloney T, Suurnäkki A (2014) Fibre porosity development of dissolving pulp during mechanical and enzymatic processing. Cellulose 21(5):3667–3676. https://doi.org/10.1007/s10570-014-0352-x
Article
CAS
Google Scholar
Guo J, Zhou H, Stevanic JS, Dong M, Yu M, Salmén L, Yin Y (2018) Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction. Wood Sci Technol 52(1):131–147. https://doi.org/10.1007/s00226-017-0956-z
Article
CAS
Google Scholar
Hafezi SM, Enayati A, Hosseini KD, Tarmian A, Mirshokraii SA (2016) Use of amino silane coupling agent to improve physical and mechanical properties of UF-bonded wheat straw (Triticum aestivum L.) poplar wood particleboard. J For Res 27(2):427–431. https://doi.org/10.1007/s11676-015-0135-8
Article
CAS
Google Scholar
Hale MDC, Eaton RA (1986) Soft rot cavity widening: a kinetic approach. Proc R Soc Lond B 227(1247):217–226. https://doi.org/10.1098/rspb.1986.0020
Article
Google Scholar
Hill CA (2006) Wood modification: chemical, thermal and other processes, vol 5. Wiley, Chichester
Book
Google Scholar
Hill CA (2008) The reduction in the fibre saturation point of wood due to chemical modification using anhydride reagents: a reappraisal. Holzforschung 62(4):423–428. https://doi.org/10.1515/HF.2008.078
Article
CAS
Google Scholar
Hill CA, Papadopoulos AN (2001) A review of methods used to determine the size of the cell wall microvoids of wood. J Inst Wood Sci 15(6; ISSU 90):337–345. https://doi.org/10.1007/s00226-010-0305-y
CAS
Article
Google Scholar
Hill CA, Farahani MM, Hale MD (2004) The use of organo alkoxysilane coupling agents for wood preservation. Holzforschung 58(3):316–325. https://doi.org/10.1515/HF.2004.049
Article
CAS
Google Scholar
Hill CA, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112(3):1524–1537. https://doi.org/10.1002/app.29725
Article
CAS
Google Scholar
Hill CAS, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44(3):497–514
Article
CAS
Google Scholar
Hill CA, Keating BA, Jalaludin Z, Mahrdt E (2012a) A rheological description of the water vapour sorption kinetics behaviour of wood invoking a model using a canonical assembly of Kelvin–Voigt elements and a possible link with sorption hysteresis. Holzforschung 66(1):35–47. https://doi.org/10.1515/HF.2011.115
Article
CAS
Google Scholar
Hill CA, Ramsay J, Keating B, Laine K, Rautkari L, Hughes M, Constant B (2012b) The water vapour sorption properties of thermally modified and densified wood. J Mater Sci 47(7):3191–3197. https://doi.org/10.1007/s10853-011-6154-8
Article
CAS
Google Scholar
Hoffmann P (1986) On the stabilization of waterlogged Oakwood with PEG. II. Designing a two-step treatment for multiquality timbers. Stud Conserv 31(3):103–113. https://doi.org/10.1179/sic.1986.31.3.103
CAS
Article
Google Scholar
Hoffmann P, Jones MA (1990) Structure and degradation process for waterlogged archaeological wood. Adv Chem Ser 225:35–65
Article
CAS
Google Scholar
Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13(2):131–145. https://doi.org/10.1007/s10570-006-9055-2
Article
CAS
Google Scholar
Jalaludin Z, Hill CA, Xie Y, Samsi HW, Husain H, Awang K, Curling SF (2010) Analysis of the water vapour sorption isotherms of thermally modified acacia and sesendok. Wood Mat Sci Eng 5(3–4):194–203. https://doi.org/10.1080/17480272.2010.503940
Article
CAS
Google Scholar
Kang KY, Hwang KR, Park JY, Lee JP, Kim JS, Lee JS (2018) Critical point drying: an effective drying method for direct measurement of the surface area of a pretreated cellulosic biomass. Polymers 10(6):676. https://doi.org/10.3390/polym10060676
Article
CAS
PubMed Central
Google Scholar
Kartal SN, Yoshimura T, Imamura Y (2009) Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance. Int Biodeterior Biodegrad 63(2):187–190. https://doi.org/10.1016/j.ibiod.2008.08.006
Article
CAS
Google Scholar
Keating BA, Hill CA, Sun D, English R, Davies P, McCue C (2013) The water vapor sorption behavior of a galactomannan cellulose nanocomposite film analyzed using parallel exponential kinetics and the Kelvin–Voigt viscoelastic model. J Appl Polym Sci 129(4):2352–2359. https://doi.org/10.1002/app.39132
Article
CAS
Google Scholar
Kollmann F, Cote WA (1968) Principles of wood science and technology. I solid wood. Springer, New York
Book
Google Scholar
Ljungdahl J, Berglund LA (2007) Transverse mechanical behaviour and moisture absorption of waterlogged archaeological wood from the Vasa ship. Holzforschung 61(3):279–284. https://doi.org/10.1515/HF.2007.048
Article
CAS
Google Scholar
Luo X, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb Technol 48(1):92–99. https://doi.org/10.1016/j.enzmictec.2010.09.014
Article
CAS
PubMed
Google Scholar
Mai C, Militz H (2004) Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds—a review. Wood Sci Technol 37(6):453–461. https://doi.org/10.1007/s00226-004-0225-9
Article
CAS
Google Scholar
Mortensen MN, Egsgaard H, Hvilsted S, Shashoua Y, Glastrup J (2007) Characterisation of the polyethylene glycol impregnation of the Swedish warship Vasa and one of the Danish Skuldelev Viking ships. J Archaeol Sci 34(8):1211–1218. https://doi.org/10.1016/j.jas.2006.10.012
Article
Google Scholar
Nicholas DD (1973) Wood deterioration and its prevention by preservative treatments: degradation and protection of wood, vol 1. Syracuse University Press, Syracuse
Google Scholar
Ormondroyd GA, Curling SF, Mansour E, Hill CA (2017a) The water vapour sorption characteristics and kinetics of different wool types. J Text Inst 108(7):1198–1210. https://doi.org/10.1080/00405000.2016.1224442
CAS
Article
Google Scholar
Ormondroyd GA, Källbom SK, Curling SF, Stefanowski BK, Segerholm BK, Wålinder MEP, Jones D (2017b) Water sorption, surface structure and surface energy characteristics of wood composite fibres refined at different pressures. Wood Mat Sci Eng 12(4):203–210. https://doi.org/10.1080/17480272.2016.1150343
Article
CAS
Google Scholar
Panov D, Terziev N (2009) Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. Int Biodeterior Biodegrad 63(4):456–461. https://doi.org/10.1016/j.ibiod.2008.12.003
Article
CAS
Google Scholar
Papadopoulos AN, Hill CAS, Gkaraveli A (2003) Determination of surface area and pore volume of holocellulose and chemically modified wood flour using the nitrogen adsorption technique. Holz Roh Werkst 61(6):453–456. https://doi.org/10.1007/s00107-003-0430-5
Article
CAS
Google Scholar
Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66(1):97–103. https://doi.org/10.1016/j.carbpol.2006.02.026
Article
CAS
Google Scholar
Pfriem A, Zauer M, Wagenführ A (2009) Alteration of the pore structure of spruce (Picea abies (L.) Karst.) and maple (Acer pseudoplatanus L.) due to thermal treatment as determined by helium pycnometry and mercury porosimetry. Holzforschung 63:94–98. https://doi.org/10.1515/HF.2009.027
Article
CAS
Google Scholar
Plötze M, Niemz P (2011) Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. Eur J Wood Prod 69(4):649–657. https://doi.org/10.1007/s00107-010-0504-0
Article
CAS
Google Scholar
Popescu CM, Hill CA (2013) The water vapour adsorption–desorption behaviour of naturally aged Tilia cordata Mill. wood. Polym Degrad Stab 98(9):1804–1813. https://doi.org/10.1016/j.polymdegradstab.2013.05.021
Article
CAS
Google Scholar
Popescu CM, Hill CA, Curling S, Ormondroyd G, Xie Y (2014) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J Mater Sci 49(5):2362–2371. https://doi.org/10.1007/s10853-013-7937-x
Article
CAS
Google Scholar
Rowell RM (ed) (2012) Handbook of wood chemistry and wood composites, 2nd edn. CRC Press, Boca Raton FL
Google Scholar
Schniewind AP (1990) Physical and mechanical properties of archaeological wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood. Advances in chemistry series 225. American Chemical Society, Washington, pp 87–109
Google Scholar
Singh AP (2012) A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. J Cult Herit 13(3):S16–S20. https://doi.org/10.1016/j.culher.2012.04.002
Article
Google Scholar
Singh AP, Kim YS, Singh T (2016) Bacterial degradation of wood. In: Kim YS, Funada R, Singh AP (eds) Secondary xylem biology. Academic Press, Cambridge, pp 169–190
Chapter
Google Scholar
Skaar C (1984) Wood–water relationships. In: Rowell R (ed) The chemistry of solid wood. Advances in chemistry. American Chemical Society, Washington
Google Scholar
Skaar C (1988) Hygroexpansion in wood. In: Skaar C (ed) Wood–water relations. Springer series in wood science. Springer, Berlin. https://doi.org/10.1007/978-3-642-73683-4_4
Chapter
Google Scholar
Smulski S, Cote WA (1984) Penetration of wood by a water-borne alkyd resin. Wood Sci Technol 18(1):59–75. https://doi.org/10.1007/BF00632131
Article
CAS
Google Scholar
Stone JE, Scallan AM (1965) Effect of component removal upon the porous structure of the cell wall of wood. J Polym Sci Part C Polym Symp 11(1):13–25. https://doi.org/10.1002/polc.5070110104
Article
Google Scholar
Stone JE, Scallan AM (1968) The effect of component removal upon the porous structure of the cell wall of wood. III. A comparison between the Sulfite and Kraft processes. Pulp Pap Mag Can 69(12):69–74
CAS
Google Scholar
Vorobyev A, Almkvist G, van Dijk NP, Gamstedt EK (2017) Relations of density, polyethylene glycol treatment and moisture content with stiffness properties of Vasa oak samples. Holzforschung 71(4):327–335. https://doi.org/10.1515/hf-2016-0202
Article
CAS
Google Scholar
Weatherwax RC, Caulfield DF (1971) Cellulose aerogels: an improved method for preparing a highly expanded form of dry cellulose. Tappi J 54(6):985–986
CAS
Google Scholar
Westermarck S (2000) Use of mercury porosimetry and nitrogen adsorption in characterisation of the pore structure of mannitol and microcrystalline cellulose powders, granules and tablets. Academic Dissertation, University of Helsinki, Helsinki, Finland
Xie Y, Hill CA, Sun D, Jalaludin Z, Wang Q, Mai C (2011a) Effects of dynamic aging (hydrolysis and condensation) behaviour of organofunctional silanes in the aqueous solution on their penetrability into the cell walls of wood. BioResources 6(3):2323–2339
CAS
Google Scholar
Xie Y, Hill CA, Xiao Z, Mai C, Militz H (2011b) Dynamic water vapour sorption properties of wood treated with glutaraldehyde. Wood Sci Technol 45(1):49–61. https://doi.org/10.1007/s00226-010-0311-0
Article
CAS
Google Scholar
Yin J, Song K, Lu Y, Zhao G, Yin Y (2015) Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood. Wood Sci Technol 49(5):987–1001. https://doi.org/10.1007/s00226-015-0741-9
Article
CAS
Google Scholar
Zauer M, Kretzschmar J, Großmann L, Pfriem A, Wagenführ A (2014) Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry. Wood Sci Technol 48(1):177–193. https://doi.org/10.1007/s00226-013-0597-9
Article
CAS
Google Scholar
Zelinka SL, Glass SV, Jakes JE, Stone DS (2016) A solution thermodynamics definition of the fiber saturation point and the derivation of a wood–water phase (state) diagram. Wood Sci Technol 50(3):443–462. https://doi.org/10.1007/s00226-015-0788-7
Article
CAS
Google Scholar