Skip to main content

Advertisement

Log in

Isolation and characterization of bagasse cellulose nanofibrils by optimized sulfur-free chemical delignification

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Cellulose nanofibril (CNF) was isolated from bagasse using a modified sulfur-free and bio-refinery-based approach. For this purpose, a chemo-mechanical procedure was designed that consisted of depithing, de-waxing, autohydrolyzing, soda-anthraquinone pulping, elemental chlorine-free bleaching, refining, and ultrafine grinding. In order to obtain a high degree of final fibrillation, the most important parameters in the delignification process were optimized by response surface methodology. Samples were then characterized by optical microscopy, scanning electron microscopy, X-ray diffraction (XRD), National Renewable Energy Laboratory procedure, ASTM (D1103-60 and D1104-56), Kappa number, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and transition transmission electron microscopy (TEM). The microscopic images as well as the results from chemical composition characterization and FTIR analysis indicated that the employed chemical treatments were effective in removing non-cellulosic materials from the fibers. In addition, XRD analysis showed that cellulose crystallinity increased during the treatments. Based on the DLS results, the hydrodynamic diameter of CNF ranged within 860 nm. TEM image analyses showed that a considerable percentage of the isolated CNF had an average diameter of about 11 nm, and the yield of fibrillation was found to be about 99 %. Based on the results obtained, it may be claimed that the chemo-mechanical process developed in this study for the facile preparation of CNF is a promising technique for biocomposite preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnihotri S, Dutt D, Tyagi C (2010) Complete characterization of bagasse early species of saccharum officinarum-CO 89003 for pulp and paper making. BioResources 5:1197–1214

    CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  PubMed  Google Scholar 

  • Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259

    Article  CAS  Google Scholar 

  • Amidon TE, Liu S (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550

    Article  CAS  PubMed  Google Scholar 

  • Amiri H, Karimi K, Roodpeyma S (2010) Production of furans from rice straw by single-phase and biphasic systems. Carbohydr Res 345:2133–2138

    Article  CAS  PubMed  Google Scholar 

  • Andrade MF, Colodette JL (2014) Dissolving pulp production from sugar cane bagasse. Ind Crops Prod 52:58–64

    Article  CAS  Google Scholar 

  • Bajpai P (2012) Environmentally benign approaches for pulp bleaching. Elsevier, Amsterdam

    Google Scholar 

  • Bajpai P (2013) Biorefinery in the pulp and paper industry. Elsevier, Amsterdam

    Google Scholar 

  • Biermann CJ (1996) Handbook of pulping and papermaking. Academic press, San Diego

    Google Scholar 

  • Borrega M, Tolonen LK, Bardot F, Testova L, Sixta H (2013) Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping. Bioresour Technol 135:665–671

    Article  CAS  PubMed  Google Scholar 

  • Casey JP (1952) Pulp and paper. Chemistry and chemical technology. Interscience, New York

    Google Scholar 

  • Chai X-S, Zhu Y (1999) Rapid pulp Kappa number determination using spectrophotometry. Institute of Paper Science and Technology. http://hdl.handle.net/1853/3065. Accessed July 2015

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Cheng Q, De Vallance D, Wang J, Wang S (2011) Advanced cellulosic nanocomposites materials. In: Advances in composite materials. INTECH, West Virginia

    Google Scholar 

  • Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava M, Paltakari J, Maloney T (2013) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20:2847–2861

    Article  CAS  Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    Article  CAS  Google Scholar 

  • Ferrer A, Filpponen I, Rodríguez A, Laine J, Rojas OJ (2012a) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255

    Article  CAS  PubMed  Google Scholar 

  • Ferrer A et al (2012b) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193

    Article  CAS  Google Scholar 

  • Hamzeh Y, Ashori A, Khorasani Z, Abdulkhani A, Abyaz A (2013) Pre-extraction of hemicelluloses from bagasse fibers: effects of dry-strength additives on paper properties. Ind Crops Prod 43:365–371

    Article  CAS  Google Scholar 

  • Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205

    Article  CAS  Google Scholar 

  • Jonoobi M, Niska KO, Harun J, Misra M (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639

    CAS  Google Scholar 

  • Kalia S, Kaith B, Kaur I (2011) Cellulose fibers: bio-and nano-polymer composites. Green chemistry and technology. Springer, Heidelberg

    Book  Google Scholar 

  • Kim S, Holtzapple MT (2006) Delignification kinetics of corn stover in lime pretreatment. Bioresour Technol 97:778–785

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Liu S, Li J, Sun R (2010) Effect of hot-water extraction on alkaline pulping of bagasse. Biotechnol Adv 28:609–612

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  CAS  PubMed  Google Scholar 

  • Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299

    Article  CAS  Google Scholar 

  • Mantanis G, Young R, Rowell R (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22

    CAS  Google Scholar 

  • Premjai P, Khammuang P, Somord K, Tawichai N, Intatha U, Soykeabkaew N (2014) Bio-based composites of sugarcane bagasse: effect of bagasse particle size. In: Paper presented at the 26th annual meeting of the Thai Society for Biotechnology and international conference, Thai Society for Biotechnology (TSB) and Mae Fah Lunag University (School of Science), Chiang Rai, Thailand

  • Rosa M et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  PubMed  Google Scholar 

  • Satari Baboukani B, Vossoughi M, Alemzadeh I (2012) Optimisation of dilute-acid pretreatment conditions for enhancement sugar recovery and enzymatic hydrolysis of wheat straw. Biosyst Eng 111:166–174

    Article  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2005a) Determination of structural carbohydrates and lignin in biomass. National renewable energy laboratory (NREL). http://www.nrel.gov/biomass/analytical_procedures.html. Accessed 17 July 2015

  • Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005b) Determination of extractives in biomass. National renewable energy laboratory (NREL). http://www.nrel.gov/biomass/analytical_procedures.html. Accessed 17 July 2005

  • Sun R (2010) Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose. Elsevier, Oxford

    Google Scholar 

  • Teixeira EDM, Bondancia TJ, Teodoro KBR, Corrêa AC, Marconcini JM, Mattoso LHC (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crops Prod 33:63–66

    Article  Google Scholar 

  • Thomas S, Pothan LA (2009) Natural fibre reinforced polymer composites: from macro to nanoscale. Old City Publishing, Philadelphia

    Google Scholar 

  • Viera RG, de Assunção R, Meireles CDS, Vieira JG, de Oliveira GS (2007) Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydr Polym 67:182–189

    Article  CAS  Google Scholar 

  • Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils. J Renew Mater 1:195–211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Pars Paper Co. and Nano Novin Polymer Co. for assisting in CNF production using their PFI mill and ultrafine grinder, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Heidarian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarian, P., Behzad, T. & Karimi, K. Isolation and characterization of bagasse cellulose nanofibrils by optimized sulfur-free chemical delignification. Wood Sci Technol 50, 1071–1088 (2016). https://doi.org/10.1007/s00226-016-0820-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0820-6

Keywords

Navigation