Skip to main content
Log in

Chemical and structural characterization of the bark of Albizia niopoides trees from the Amazon

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The chemical composition and anatomy of Albizia niopoides bark from trees grown in a native forest area in the Amazon region, Brazil, were studied. The A. niopoides bark has a narrow rhytidome with thin phellem layers. Conspicuous structural elements are strands of axial parenchyma associated with fibres and large sclereid nodules. The mean chemical composition of A. niopoides bark was ash 5.5 %, total extractives 14.5 %, mainly corresponding to polar compounds that were soluble in ethanol and water, lignin 37.1 % and suberin 0.5 %. The polysaccharides composition showed a predominance of glucose and xylose (59.9 and 33.3 % of total monosaccharides, respectively). The ethanol–water bark extract had a high content in phenolics: total phenolics 247.15 mg gallic acid/g extract, flavonoids 59.08 mg catechin/g extract and tannins 149.98 mg catechin/g extract. The antioxidant activity corresponded to 839.05 mg Trolox per g of extract or 95.98 mg Trolox per g of bark. Albizia niopoides bark fractures easily with a predominance of larger particles over 2 mm (60.4 % of the total sample mass) and with little formation of fines (15 % of the total sample mass). Extractives were present preferentially in the finest fraction with enrichment in ethanol solubles. A potential valorization of A. niopoides bark based on the use of polar extractives and lignin was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed D, Kumar V, Sharma M, Verma A (2014) Target guided isolation, in vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark. BMC Complement Altern Med 14:155–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Amrish C, Tarasingh RR (2011) Pharmacognostic evaluation and phytochemical screening of Albizia odoratissima bark powder. IJRAP 2(6):1798–1801

    Google Scholar 

  • Baptista I, Miranda I, Quilhó T, Gominho J, Pereira H (2013) Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Ind Crop Prod 50:166–175

    Article  CAS  Google Scholar 

  • Barbosa AP (2014) Pharmacologically active saponins from the genus Albizia (Fabaceae). Int J Pharm Pharm Sci 6(11):32–36

    CAS  Google Scholar 

  • Bhat KH (1982) Anatomy, basic density and shrinkage of Birch bark. IAWA Bull 3:207–213

    Article  Google Scholar 

  • Bridgeman TG, Darvell LI, Jones JM, Williams PT, Fahmi R, Bridgwater AV, Barraclough T, Shield I, Yates N, Thain SC, Donnison IS (2007) Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86(1–2):60–72

    Article  CAS  Google Scholar 

  • Carvalho PER (2008) Espécies arbóreas brasileiras [Brazilian tree species]. Brasília, DF: Embrapa Informação Tecnológica; Colombo: Embrapa Florestas 3

  • Chundawat SPS, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96(2):219–231

    Article  CAS  PubMed  Google Scholar 

  • Costa CG, Coradin VTR, Czarneski CM, Pereira BAS (1997) Bark anatomy of arborescent leguminosae of cerrado and gallery forest of Central Brazil. IAWA J 18(4):385–399

    Article  Google Scholar 

  • De Judicibus ML (2011) Botanical notebook: a review of the study into the design and function of plants. University of Melbourne, Custom Book Centre

    Google Scholar 

  • Deb J, Dash GK (2014) Pharmacognostic studies on stem bark of Acacia ferruginea DC. Der Pharmacia Lettre 6(3):61–66

    Google Scholar 

  • Eltahir AS, AbuReish BI (2010) Comparative morphological and anatomical studies of the barks of three Albizzia species. J Chem Pharm Res 2(3):260–268

    Google Scholar 

  • Faisal M, Singh PP, Irchhaiya R (2012) Review on Albizia Lebbeck a potential herbal drug. Int Res J Pharm 3(5):63–68

    Google Scholar 

  • Harkin JM, Rowe JW (1971) Bark and its possible uses. Research Note FPL, 091. U.S. Department of Agriculture. Forest Service. Forest Products Laboratory, Madison Wisconsin

  • Janceva S, Dizhbite T, Telisheva G, Spulle U, Klavinsh L, Dzenis M (2011) Tannins of deciduous trees bark as a potential source for obtaining ecologically safe wood adhesives. In: Environ. Technol. Res. Proceedings of the 7th International Science Prac Conference, pp 265–270

  • Junikka L (1994) Survey of English macroscopic bark terminology. IAWA J 15(1):3–45

    Article  Google Scholar 

  • Kofujita H, Ettyu K, Ota M (1999) Characterization of the major components in bark from five Japanese tree species for chemical utilization. Wood Sci Technol 33:223–228

    Article  CAS  Google Scholar 

  • Krishnappa P, Venkatarangaiah K, Venkatesh, Kumar S, Rajanna S, Gupta RKP (2014) Antioxidant and prophylactic effects of Delonix elata L., stem bark extracts, and flavonoid isolated quercetin against carbon tetrachloride-induced hepatotoxicity in rats. BioMed Res Int 14. Article ID 507851

  • Kumar S, Bansal P, Gupta V, Sannd R, Rao MM (2010) The clinical effect of Albizia lebbeck stem bark decoction on bronchial asthma. Int J Pharm Sci Drug Res 2(1):48–50

    Google Scholar 

  • Lawton JR (1972) Seasonal variations in the secondary phloem of some forest trees from Nigeria II. Structure of the phloem. New Phytol 71(2):335–348

    Article  Google Scholar 

  • Le Normand M, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydr Polym 111:979–987

    Article  PubMed  Google Scholar 

  • Luis Â, Neiva D, Pereira H, Gominho J, Domingues F, Duarte AP (2014) Stumps of Eucalyptus globulus as a source of antioxidant and antimicrobial polyphenols. Molecules 19:16428–16446

    Article  PubMed  Google Scholar 

  • Machado SR, Marcati CR, Morretes BL, Angyalossy V (2005) Comparative bark anatomy of root and stem in Styrax camporum (Styracaceae). IAWA J 26(4):477–487

    Article  Google Scholar 

  • Makino R, Ohara S, Hashida K (2011) Radical scavenging characteristics of condensed tannins from barks of various tree species compared with quebracho wood tannin. Holzforschung 65(5):651–657

    Article  CAS  Google Scholar 

  • Miranda I, Gominho J, Mirra I, Pereira H (2012a) Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Ind Crop Prod 41:299–305

    Article  Google Scholar 

  • Miranda I, Gominho J, Mirra I, Pereira H (2012b) Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Ind Crop Prod 36:395–400

    Article  CAS  Google Scholar 

  • Mohamed TK, Nassar MI, Gaara AH, El-Kashak WA, Brouard I, El-Toumy SA (2013) Secondary metabolites and bioactivities of Albizia anthelmintica. Pharmacognosy Res 5(2):80–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Ottone S, Baldwin RC (1981) The relationship of extractive content to particle size distribution in milled yellow-poplar (Liriodendron tulipifera L.) bark. Wood Fiber Sci 13(2):74–85

    Google Scholar 

  • Pereira H (1988) Chemical composition and variability of cork from Quercus suber. Wood Sci Technol 22:211–218

    Article  CAS  Google Scholar 

  • Quilhó T, Pereira H (2001) Within and between-tree variation of bark content and wood density of Eucalyptus globulus in commercial plantations. IAWA J 22(3):255–265

    Article  Google Scholar 

  • Quilhó T, Pereira H, Richter HG (1999) Variability of bark structure in plantation-grown Eucalyptus globulus. IAWA J 20:171–180

    Article  Google Scholar 

  • Quilhó T, Sousa V, Tavares F, Pereira H (2013) Bark anatomy and cell size variation in Quercus faginea. Turk J Bot 37:561–570

    Google Scholar 

  • Richter HG, Mazzoni-Viveiros S, Alves E, Luchi A, Costa C (1996) Padronização de critérios para a descrição anatómica da casca: lista de características e glossário de termos [Standardization to the anatomical description of the bark: list of features and glossary of terms]. IF Série Registros São Paulo 16:1–25

    Google Scholar 

  • Rocha GP, Borges LM, Romero R (2014) Mimosoideae (Leguminosae) na Reserva Ecológica do Panga, Minas Gerais, Brasil [Mimosoideae (Leguminosae) in the Reserva Ecológica do Panga, Minas Gerais, Brazil]. Rodriguésia 65(3):735–750

    Article  Google Scholar 

  • Roth I (1981) Structural patterns of tropical barks. Handb. Pflanzenanat. IX/3, Borntraeger, Berlin, Stuttgart

  • Santos SAO, Villaverde JJ, Silva CM, Neto CP, Silvestre AJD (2012) Supercritical fluid extraction of phenolic compounds from Eucalyptus globulus Labill bark. J. Supercrit. Fluids 71:71–79

    Article  CAS  Google Scholar 

  • Sen A, Quilhó T, Pereira H (2011) Bark anatomy of Quercus cerris L. var. cerris from Turkey. Turk J Bot 35:45–55

    Google Scholar 

  • Sharmin T, Islam F, Kaisar MA, Al-Mansur MdA, Sikder MdAA, Rashid MA (2014) Chemical and biological investigations of Albizia chinensis (Osbeck.) Merr. J Phys Sci 25(2):29–38

    Google Scholar 

  • Snak C, Temponi LG, Garcia FCP (2012) Leguminosae no Parque Ecológico Paulo Gorski, Cascavel, Paraná, Brasil [Leguminosae in the Parque Ecológico Paulo Gorski, Cascavel, Paraná, Brazil]. Rodriguésia 63(4):999–1017

    Article  Google Scholar 

  • Sultana B, Anwar F, Przybylski R (2007) Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem 104(3):1106–1114

    Article  CAS  Google Scholar 

  • Tamaki Y, Mazza G (2010) Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: effects of extractives, particle size and crop species. Ind Crop Prod 31:534–541

    Article  CAS  Google Scholar 

  • Tamokou JD, Mpetga DJS, Lunga PK, Tene M, Tane P, Kuiate JR (2012) Antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds from stem bark of Albizia adianthifolia (Mimosoideae). BMC Complement Altern Med 12:99–109

    Article  PubMed Central  Google Scholar 

  • Vázquez G, Antorrena G, Parajó JC (1987) Studies on the utilization of Pinus pinaster bark. Part 1: chemical constituents. Wood Sci Technol 21:65–74

    Google Scholar 

  • Vázquez G, González-Alvarez J, Freire S, López-Suevos F, Antorrena G (2001) Characteristics of Pinus pinaster bark extracts obtained under various extraction conditions. Holz Roh-Werkst 59:451–456

    Article  Google Scholar 

  • Yadav SS, Galib Prajapati PK, Harisha CR (2011) Pharmacognostical and physico-chemical investigations of Albizia lebbeck benth. flower. Int J Pharm Biol Sci Arch 2(5):1434–1438

    Google Scholar 

Download references

Acknowledgments

Jair Figueiredo do Carmo was supported by an Individual PhD Sandwich Scholarship (CAPES Proc. Nº 11692/2013-08) Programa de Pós-Graduação em Ciências Ambientais e Florestais da Universidade Federal Rural do Rio de Janeiro-UFRRJ. This work is part of the activities at the Strategic Project (UID/AGR/00239/2013) of Centro de Estudos Florestais, a research unit supported by the national funding of FCT—Fundação para a Ciência e a Tecnologia. Thanks are due to Alexandre Monteiro for help with the sampling and to Sofia Cardoso for help in the anatomical characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Miranda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmo, J.F., Miranda, I., Quilhó, T. et al. Chemical and structural characterization of the bark of Albizia niopoides trees from the Amazon. Wood Sci Technol 50, 677–692 (2016). https://doi.org/10.1007/s00226-016-0807-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0807-3

Keywords

Navigation