Skip to main content
Log in

Chemical and anatomical characterization, and antioxidant properties of barks from 11 Eucalyptus species

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Bark is an interesting and available byproduct from the forest industry that can be used as biomass for biorefineries. The barks from 11 Eucalyptus species (E. botryoides, E. camaldulensis, E. globulus, E. grandis, E. maculata, E. ovata, E. propinqua, E. resinifera, E. rudis, E. saligna and E. viminalis) were studied for 4-year-old trees regarding their structural and chemical features, including the composition of ethanol–water extracts and their antioxidant properties. The bark of these young trees had a thin or inexistent rhytidome, with a reduced periderm with low suberized and lignified cells. The barks were structurally similar and characterized by a homogeneous phloem with little ray expansion and alterations in the collapsed phloem. Photomicrographs documented the main structural differences. There was a between-species variation in chemical composition: extractives ranged from 5.5 to 18.6% (the hydrophilic extractives were dominant) and lignin from 14.4 to 23.5%. The carbohydrates composition also showed between species variation, for example the glucose-to-xylose ratio ranged from 3.8 to 12.1, allowing to consider carbohydrate targeted utilizations. Suberin content was in all cases very low (< 1%). The between-species variation of the ethanol–water bark extracts was also high: total phenolics ranged from 283 to 917 mg GAE/g of extract, flavonoids from 121 to 387 mg CE/g of extract and tannins from 94 to 545 mg CE/g extract. The antioxidant activity ranged from 368 to 1042 mg Trolox/g of extract and IC50 values from 3.4 to 8.6 µg extract/ml (the value for trolox was 2.6). The bark extract of E. rudis was particularly interesting as regards its antioxidant capacity, as well as that of E. maculata and E. propinqua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdalla S, Pizzi A, Ayed N, Bouthoury FC, Charrier B, Bahabri F, Ganash A (2014) MALDI-TOF analysis of Aleppo pine (Pinus halepensis) bark tannin. BioResources 9:3396–3406

    Article  Google Scholar 

  • Alfonso V (1987) Anatomical characterization of wood and bark of the main species of Eucalyptus L’ Herit, cultivated in Brazil. Ph.D. Thesis, Instituto de Biociências da Universidade de Sao PauIo, Brazil

  • Andrade MCN, Minhoni MTA, Sansígolo CA, Zied DC (2010) Chemical analysis of the wood and bark of different Eucalyptus types before and during the shiitake cultivation. Rev Árvore 34:165–175

    Article  Google Scholar 

  • Baptista I, Miranda I, Quilhó T, Gominho J, Pereira H (2013) Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Ind Crop Prod 50:166–175

    Article  CAS  Google Scholar 

  • Bargatto J (2010) Evaluation of the potential use of Eucalyptus spp. bark for bioethanol production. Ph.D. Thesis, Universidade de S. Paulo, Piracicaba (in Portuguese)

  • Carmo F, Miranda I, Quilhó T, Carvalho AM, Carmo FHDJ, Latorraca JVF, Pereira H (2016a) Bark characterisation of the Brazilian hardwood Goupia glabra in terms of its valorisation. BioResources 11:4794–4807

    Article  CAS  Google Scholar 

  • Carmo F, Miranda I, Quilhó T, Sousa VB, Cardoso S, Carvalho AM, Carmo FHDJ, Latorraca JVF, Pereira H (2016b) Copaifera langsdorffii bark as a source of chemicals: structural and chemical characterization. J Wood Chem Technol 36:305–317

    Article  CAS  Google Scholar 

  • Carmo F, Miranda I, Quilhó T, Sousa VB, Cardoso S, Carvalho AM, Carmo FHDJ, Latorraca JVF, Pereira H (2016c) Chemical and structural characterization of the bark of Albizia niopoides trees from the Amazon. Wood Sci Technol 50:677–692

    Article  CAS  Google Scholar 

  • Chattaway MM (1955a) The anatomy of bark. VI. Peppermints, boxes, iron barks, and other eucalypts with cracked and furrowed barks. Aust J Bot 3:170–176

    Article  Google Scholar 

  • Chattaway MM (1955b) The anatomy of bark II. Oil gland in Eucalyptus species. Aust J Bot 3:23–27

    Google Scholar 

  • Chattaway MM (1955c) The anatomy of bark. III. Enlarged fibres in bloodwoods (Eucalyptus spp.). Aust J Bot 3:28–38

    Article  Google Scholar 

  • Chattaway MM (1955d) The anatomy of bark. IV. Radially elongated cells in the phelloderm of species of Eucalyptus. Aust J Bot 3:39–47

    Article  Google Scholar 

  • Domingues RMA, Sousa GDA, Freire CSR, Silvestre AJD, Neto CP (2010) Eucalyptus globulus biomass residues from pulping industry as a source of high value triterpenic compounds. Ind Crop Prod 3:65–70

    Article  Google Scholar 

  • Domingues RMA, Sousa GDA, Silva CM, Freire CSR, Silvestre AJD, Neto CP (2011) High value triterpenic compounds from the outer barks of several Eucalyptus species cultivated in Brazil and in Portugal. Ind Crop Prod 33:158–164

    Article  CAS  Google Scholar 

  • Freire CSR, Silvestre AJD, Neto CP (2002) Identification of new hydroxy fatty acids and ferulic acid esters in the wood of Eucalyptus globulus. Holzforschung 56:143–149

    CAS  Google Scholar 

  • Jia Z, Tang M, Wu J (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  Google Scholar 

  • Kim JP, Lee IK, Yun BS, Chung SH, Shim GS, Koshino H, Yoo ID (2001) Ellagic acid rhamnosides from the stem bark of Eucalyptus globulus. Phytochemistry 57:587–591

    Article  Google Scholar 

  • Lima MA, Lavorente GB, da Silva HKP, Bragatto J, Rezende CA, Bernardinelli OD, de Azevedo ER, Gomez LD, McQueen-Mason SJ, Labate CA, Polikarpov I (2013) Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of Eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production—part 1. Biotechnol Biofuels 6:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luis Â, Neiva D, Pereira H, Gominho J, Domingues F, Duarte AP (2014) Stumps of Eucalyptus globulus as a source of antioxidant and antimicrobial polyphenols. Molecules 19:16428–16446

    Article  PubMed  Google Scholar 

  • Miranda I, Gominho J, Pereira H (2012) Incorporation of bark and tops in Eucalyptus globulus wood pulping. BioResources 7:4350–4361

    Google Scholar 

  • Miranda I, Gominho J, Mirra I, Pereira H (2013) Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Ind Crop Prod 41:299–305

    Article  CAS  Google Scholar 

  • Miranda I, Lima L, Quilhó T, Knapic S, Pereira H (2016) The bark of Eucalyptus sideroxylon as a source of phenolic extracts with antioxidant properties. Ind Crop Prod 82:81–87

    Article  CAS  Google Scholar 

  • Mohamed GA, Ibrahim SRM (2007) Eucalyptone G, a new phloroglucinol derivative and other constituents from Eucalyptus globulus Labill. ARKIVOC 15:281–291

    Google Scholar 

  • Morais LC, Freitas OM, Gonçalves EP, Vasconcelos LT, González Beça CG (1999) Reactive dyes removal from wastewaters by adsorption on Eucalyptus bark: variables that define the process. Water Res 33:979–988

    Article  CAS  Google Scholar 

  • Mori C, Pimenta AS, Vital BR, Mori FA (2001) Tannin-based wood adhesives made from the bark of three Eucalyptus species. R Árvore 25:19–28

    CAS  Google Scholar 

  • Mota I, Rodrigues Pinto PC, Novo C, Sousa G, Guerreiro O, Guerra ÂR, Duarte MF, Rodrigues AE (2012) Extraction of polyphenolic compounds from Eucalyptus globulus bark: process optimization and screening for biological activity. Ind Eng Chem Res 51:6991–7000

    Article  CAS  Google Scholar 

  • Neiva DM, Gominho J, Pereira H (2014) Modelling and optimization of Eucalyptus globulus bark and wood delignification using response surface methodology. BioResources 9:2907–2921

    Article  CAS  Google Scholar 

  • Neiva DM, Fernandes L, Araújo S, Lourenço A, Gominho J, Simões RMS, Pereira H (2015) Chemical composition and kraft pulping potential of 12 eucalypt species. Ind Crop Prod 66:89–95

    Article  CAS  Google Scholar 

  • Neiva DM, Gominho J, Fernandes L, Lourenço A, Chemetova C, Simões RMS, Pereira H (2016) The potential of hydrothermally pretreated industrial barks from E. globulus as a feedstock for pulp production. J Wood Chem Technol 36(6):383 392

    Article  Google Scholar 

  • Pereira H (1988a) Chemical composition and variability of cork from Quercus suber. Wood Sci Technol 22:211–218

    Article  CAS  Google Scholar 

  • Pereira H (1988b) Variability in the chemical composition of plantation eucalypts (Eucalyptus globulus Labill.). Wood Fiber Sci 20:82–90

    CAS  Google Scholar 

  • Pereira H, Graça J, Rodrigues JC (2003) Wood chemistry in relation to quality. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. CRC Press, Blackwell Publishing, Oxford, pp 53–83

    Google Scholar 

  • Puttaswamy NY, Gunashekara DR, Ahmed F, Urooj A (2014) Phytochemical composition and in vitro anti- hyperglycemic potency of Eucalyptus tereticornis bark. Indian J Nutr 1:102–107

    Google Scholar 

  • Quilhó T, Pereira H (2001) Within and between-tree variation of bark content and wood density of Eucalyptus globulus in commercial plantations. IAWA J 22:255–226

    Article  Google Scholar 

  • Quilhó T, Pereira H, Richter HG (1999) Variability of bark structure in plantation-grown Eucalyptus globulus. IAWA J 20:171–180

    Article  Google Scholar 

  • Ramirez M, Rodriguez J, Balocchi C, Peredo M, Elissetche JP, Mendonca R, Valenzuela S (2009) Chemical composition and wood anatomy of Eucalyptus globulus clones: variations and relationships with pulpability and handsheet properties. J Wood Chem Technol 29:43–58

    Article  CAS  Google Scholar 

  • Richter HG, Mazzoni-Viveiros S, Alves E, Luchi A, Costa C (1996) Padronização de critérios para a descrição anatómica da casca: Lista de características e glossário de termos (Standardization to the anatomical description of the bark: list of features and glossary of terms). Rev IF Série Registos, São Paulo, 16 1–25 (in Portuguese)

  • Sakai K (2001) Chemistry of bark. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry, 2nd edn. Marcel Dekker, New York, pp 243–276

    Google Scholar 

  • Santos SAO, Freire CS, Domingues MRM, Silvestre AJD, Pascoal Neto C (2011) Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography–mass spectrometry. J Agric Food Chem 59:9386–9393

    Article  CAS  PubMed  Google Scholar 

  • Santos S, Villaverde JJ, Freire CSR, Domingues MRM, Pascoal Neto C, Silvestre AD (2012) Phenolic composition and antioxidante activiy of Eucalyptus grandis. E. urograndis (E. grandis × E. urophylla) and E. maidenii bark extracts. Ind Crop Prod 39:120–127

    Article  CAS  Google Scholar 

  • Sarin V, Pant KK (2006) Removal of chromium from industrial waste by using eucalyptus bark. Bioresour Technol 97:15–20

    Article  CAS  PubMed  Google Scholar 

  • Sartori C, Mota GS, Ferreira J, Miranda I, Mori FA, Pereira H (2016) Chemical characterization of bark of Eucalyptus urophylla hybrids in view of their valorization in biorefineries. Holzforschung 70(9):819–828

    Article  CAS  Google Scholar 

  • Sen A, de Melo MMR, Silvestre AJD, Pereira H, Silva CM (2015) Prospective pathway for a green and enhanced friedelin production through supercritical fluid extraction of Quercus cerris cork. J Supercrit Fluid 97:247–255

    Article  CAS  Google Scholar 

  • Senelwa K, Sims EEH (1999) Fuel characteristics of short rotation forest biomass. Biomass Bioenerg 17:127–140

    Article  Google Scholar 

  • Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205

    Article  CAS  Google Scholar 

  • Silva HKP, lavorente GB, Bragatto J, Labate CA (2011) Caracterização química e análise do potencial químico de cascas de cinco clones comerciais de Eucalyptus spp. visando a produção de etanol (Chemical characterization and analysis of the chemical potential of five commercial clones of Eucalyptus spp with objective to produce ethanol). BIOCOM 4° Simpósio Nacional de Biocombustíveis, Rio de Janeiro (in Portuguese)

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • TAPPI T 204 cm-97 (1997) Solvent extractives of wood and pulp. In: TAPPI test methods. TAPPI Press, Atlanta

    Google Scholar 

  • TAPPI T 211 om-02 (2002) Ash in wood, pulp, paper and paperboard: combustion at 525 °C. In: TAPPI test methods. TAPPI Press, Atlanta

    Google Scholar 

  • TAPPI T 222 om-02 (2002) Acid-insoluble lignin in wood and pulp. TAPPI test methods. TAPPI Press, Atlanta

    Google Scholar 

  • TAPPI T 249 cm-8 (1985) Carbohydrate composition of extractive-free wood and wood pulp by gas-liquid chromatography. TAPPI test methods. TAPPI Press, Atlanta

    Google Scholar 

  • TAPPI UM-250 (1991) Acid-soluble lignin in wood and pulp. In: TAPPI. Useful method. TAPPI Press, Atlanta

    Google Scholar 

  • Vankar PS, Srivastava J, Molĉanov K, Kojic-Prodić B (2009) Withanolide A series steroidal lactones from Eucalyptus globulus bark. Phytochem Lett 2:67–71

    Article  CAS  Google Scholar 

  • Vázquez G, Fontenla E, Santos J, Freire MS, González-Álvarez J, Antorrena G (2008) Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind Crop Prod 28:279–285

    Article  Google Scholar 

  • Yadav KR, Sharma RK, Kothari RM (2002) Bioconversion of eucalyptus bark waste into soil conditioner. Biores Technol 81:163–165

    Article  CAS  Google Scholar 

  • Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wang W, Zhang Y, Xu J, Xu H (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of celulose. BioresTechnol 101:4895–4899

    CAS  Google Scholar 

  • Yun BS, Lee IK, Kim JP, Chung SH, Shim GS, Yoo ID (2000) Lipid peroxidation inhibitory activity of some constituents isolated from the stem bark of Eucalyptus globulus. Arch Pharm Res 23:147 – 50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by project EucPlus—New processes and uses for eucalypt woods (PTDC/AGR-CFL/119752/2010) by FCT (Fundação para a Ciência e a Tecnologia, Portugal). Centro de Estudos Florestais is a research unit supported by FCT Funding (UID/AGR/0239/2013). Funding from FCT is acknowledged by Sofia Knapic with a Post-Doctoral Grant (SFRH/BPD/76101/2011). We thank Dr. Paula Soares for providing the samples and the information about the trial. The trial was sponsored by CELPA—Associação da Indústria Papeleira. We thank Joaquina Silva for her help in the chemical laboratory, Cristiana Alves, Marília Pirralho and Helena Patrício for preparation of microtome sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Miranda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L., Miranda, I., Knapic, S. et al. Chemical and anatomical characterization, and antioxidant properties of barks from 11 Eucalyptus species. Eur. J. Wood Prod. 76, 783–792 (2018). https://doi.org/10.1007/s00107-017-1247-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-017-1247-y

Navigation