Skip to main content
Log in

A literature-based study on the loss tangent of wood in connection with mechanical pulping

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

In mechanical pulping, wood is dynamically loaded, which causes large heat losses due to wood viscoelasticity. The heat losses depend on the loss tangent (tan δ) of wood. The loss tangent has a temperature-dependent behaviour, especially in the lignin glass transition region. The glass transition softens wood, and is therefore necessary for gentle mechanical pulping, but at the same time, the loss tangent shows a maximum called the α-peak. The transient peak depends on temperature, loading frequency and moisture content. The temperature where the peak is found can be lowered with chemical treatments, but they also increase the magnitude of the peak. Thermal treatment in the presence of water also increases the magnitude. The loss tangent of wood depends, amongst other things, on the chemical structure of lignin, width of cellulose crystals, microfibril angle, and extractives in the cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Åkerholm M, Salmén L (2003) The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung 57:459–465

    Article  Google Scholar 

  • Akitsu H, Norimoto M, Morooka T, Rowell RM (1993) Effect of humidity on vibrational properties of chemically modified wood. Wood Fiber Sci 25(3):250–260

    CAS  Google Scholar 

  • Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpää P, Pesonen E (2000) Micorfibril angle of Norway spruce [Picea abies (L.) Karst] compression wood: comparison of measuring techniques. J Wood Sci 46:343–349

    Article  Google Scholar 

  • Atack D (1981) Dynamic mechanical loss properties of wood. Philos Mag A 43(3):619–625

    Article  CAS  Google Scholar 

  • Atack D, Heitner C (1979) Dynamic mechanical properties of sulphonated eastern black spruce. In: International mechanical pulping conference. Technical section, Canadian Pulp and Paper Association

  • Atack D, Heitner C, Stationwala MI (1978) Ultra high yield pulping of eastern black spruce. Svensk Papperstidn 81(5):164–176

    CAS  Google Scholar 

  • Atack D, Stationwala MI, Karnis A (1984) What happens in refining. Pulp Paper Can 85(12):T303–308

    Google Scholar 

  • Backman AC, Lindberg KAH (2001) Difference in wood material responses for radial and tangential direction as measured by dynamic mechanical thermal analysis. J Mater Sci 36:3777–3783

    Article  CAS  Google Scholar 

  • Bardet JP (1995) The damping of saturated poroelastic soils during steady-state vibrations. Appl Math Comput 67:3–31

    Article  Google Scholar 

  • Becker H, Höglund H, Tistad G (1977) Frequency and temperature in chip refining. Pap puu 56(3):123–130

    Google Scholar 

  • Berryman JG (1980) Confirmation on Biot’s theory. Appl Phys Lett 37(4):382–384

    Article  CAS  Google Scholar 

  • Biot MA (1955a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178

    Article  Google Scholar 

  • Biot MA (1955b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191

    Article  Google Scholar 

  • Biot MA (1961) Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am 34(9):1254–1264

    Article  Google Scholar 

  • Birkinshaw C, Buggy M, Henn GG (1986) Dynamic mechanical analysis of wood. J Mater Sci Lett 5:898–900

    Article  CAS  Google Scholar 

  • Chang ST, Chang HT, Huang YA, Hsu FL (2000) Effects of chemical modification reagents on acoustic properties of wood. Holzforschung 54(6):669–675

    Article  CAS  Google Scholar 

  • Chen Z, Jiang F, Li JCM (1998) Damping of fluid infiltrated nanoporous media: part I. Loss tangent. J Mater Res 13(11):3275–3281

    Article  CAS  Google Scholar 

  • Cowie JMG (1991) Polymers: chemistry and physics of modern materials, 2nd edn. Chapman & Hall, New York

    Google Scholar 

  • Ebrahimzadeh PR, Kubát DG (1993) Effects of humidity changes on damping and stress relaxation in wood. J Mater Sci 28:5668–5674

    Article  CAS  Google Scholar 

  • Ebrahimzadeh PR, Kubát J, MacQueen DH (1996) Dynamic mechanical characterization of mechanosorptive effects in wood and paper. Holz Roh Werkstoff 54:263–271

    Article  Google Scholar 

  • Eriksen O, Gregsen Ø, Krogstad P-Å (2006) Pressure and vibration in the refining zone of a TMP refiner—influence of the fibre flow. Nord Pulp Paper Res J 21(1):90–98

    Article  CAS  Google Scholar 

  • Gent AN, Rusch KC (1966) Viscoelastic behaviour of open cell foams. Rubber Chem Technol 39:388–396

    Google Scholar 

  • Hagen R, Salmén L (1994) Comparison of dynamic mechanical measurements and Tg determinations with two different instruments. Polym Test 13:113–128

    Article  CAS  Google Scholar 

  • Heitner C, Atack D (1984) Dynamic mechanical properties of sulphite treated aspen. Pap Puu 66(2):84–89

    CAS  Google Scholar 

  • Höglund H, Sohlin U, Tistad G (1976) Physical properties of wood in relation to chip refining. Tappi J 59(6):144–147

    Google Scholar 

  • Hori R, Müller M, Watanabe U, Lichtenegger HC, Fratzl P, Sugiyama J (2002) The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties. J Mater Sci 37:4279–4284

    Article  CAS  Google Scholar 

  • Illikainen M, Härkönen E, Ullmar M, Niinimäki J (2008) Disruptive shear stress in spruce and pine TMP pulps. Pap Puu 90(1):47–52

    CAS  Google Scholar 

  • James WL (1961) Internal friction and speed of sound in Douglas-fir. Forest Prod J 11(9):383–390

    Google Scholar 

  • Kelley SS, Rials TG, Glasser WG (1987) Relaxation behaviour of the amorphous components of wood. J Mater Sci 22:617–624

    Article  CAS  Google Scholar 

  • Lakes RS (1999) Viscoelastic solids. CRC Press, Boca Raton

    Google Scholar 

  • Lakes RS (2004) Viscoelastic measurement techniques. Rev Sci Instrum 75(4):797–810

    Article  CAS  Google Scholar 

  • Lind T, Lönnberg B, Tuovinen O, Hultholm T (2005) Effects of pulpwood pre-treatment in PGW pulp quality—modification of pulpwood moisture content and temperature. Appita J 58(4):312–315

    CAS  Google Scholar 

  • Lindholm C-A, Kurdin JA (1999) Chemimechanical pulping. In: Sundhom J (ed) Mechanical pulping. Fapet, Helsinki

    Google Scholar 

  • Malkin AYa (1994) Rheology fundamentals. ChemTec Publishing, Toronto

    Google Scholar 

  • Norgren S, Höglund H, Bäck R (2004) Irreversible long fibre collapse at high temperature TMP reject refining—initial studies. Pulp Paper Can 105(7):170–174

    Google Scholar 

  • Obataya E, Norimoto M, Gril J (1998) The effects of adsorbed water on dynamic mechanical properties of wood. Polymer 39(14):3059–3064

    Article  CAS  Google Scholar 

  • Obataya E, Ono T, Norimoto M (2000) Vibrational properties of wood along grain. J Mater Sci 35:2993–3001

    Article  CAS  Google Scholar 

  • Obataya E, Norimoto M, Tomita B (2001) Mechanical relaxation processes of wood in the low-temperature range. J Appl Polym Sci 81:3338–3347

    Article  CAS  Google Scholar 

  • Obataya E, Furuta Y, Gril J (2003) Dynamic viscoelastic properties of wood acetylated with acetic anhydride solution of glucose pentaacetate. J Wood Sci 49:152–157

    Article  CAS  Google Scholar 

  • Ohsaki H, Kubojima Y, Tonosaki M, Ohta M (2007) Changes in vibrational properties of wetwood of Japanese fir (Abies sachalinensis Mast) with time during drying. Wood Fiber Sci 39(2):232–240

    CAS  Google Scholar 

  • Ölander K, Salmén L, Htun M (1990) Relation between mechanical properties of pulp fibers and the activation energy of softening as affected by sulfonation. Nord Pulp Paper J 5(2):60–64

    Article  Google Scholar 

  • Olsson A-M, Salmén L (1997) The effect of lignin composition on the viscoelastic properties of wood. Nord Pulp Paper J 12(3):140–144

    Article  CAS  Google Scholar 

  • Pasanen K, Peltonen E, Haikkala P, Liimatainen H (1991) Experiences using super pressurized groundwood at a Finnish supercalander paper mill. Tappi J 17(12):63–67

    Google Scholar 

  • Peura M, Müller M, Vainio U, Sarén M-P, Saranpää P, Serimaa R (2008) X-ray microdiffraction reveals the orientation of the cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids. Trees 22:49–61

    Article  CAS  Google Scholar 

  • Placet V, Passard J, Perré P (2007) Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0–95°C: hardwood vs. softwood and normal vs. reaction wood. Holzforshung 61:548–557

    Article  CAS  Google Scholar 

  • Qiu T, Fox PJ (2006) Hydraulic damping of saturated proelastic soils during steady-state vibration. J Eng Mech 132(8):859–869

    Article  Google Scholar 

  • Salmén L (1984) Viscoelastic properties of in situ lignin under water-saturated conditions. J Mater Sci 19:3090–3096

    Article  Google Scholar 

  • Salmén L, Lucander M, Härkönen E, Sundholm J (1999) Fundamentals of mechanical pulping. In: Sundhom J (ed) Mechanical pulping. Fapet, Helsinki

    Google Scholar 

  • Sasaki T, Norimot M, Yamada T, Rowell RM (1988) Effect of moisture on the acoustical properties of wood. Mokuzai Gakkaishi 34(10):794–803

    Google Scholar 

  • Sun N, Sudipto D, Frazier CE (2007) Dynamic mechanical analysis of dry wood: linear viscoelastic response region and effects of minor moisture changes. Holzforschung 61:28–33

    Article  CAS  Google Scholar 

  • Tienvieri T, Huusari E, Sundhol J, Vuorio P, Kortelainen J, Nystedt H, Artamo A (1999) Thermomechanical pulping. In: Sundhom J (ed) Mechanical pulping. Fapet, Helsinki

    Google Scholar 

  • Tuominen R, Haikkal P, Liimatainen H (1991) Effect of dry and frozen wood on groundwood pulp quality. Pap Puu 73(4):346–351

    CAS  Google Scholar 

  • Vikstrom B, Nelson P (1980) Mechanical properties of chemically treated wood and chemimechanical pulps. Tappi J 63(3):87–91

    CAS  Google Scholar 

  • Wert CA, Weller M, Caulfield D (1984) Dynamic loss properties of wood. J Appl Phys 56(9):2453–2697

    Article  CAS  Google Scholar 

  • Yano H (1994) The changes in the acoustic properties of western red cedar due to methanol extraction. Holzforschung 48:491–495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Lauri Salminen and an anonymous reviewer for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko Havimo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havimo, M. A literature-based study on the loss tangent of wood in connection with mechanical pulping. Wood Sci Technol 43, 627–642 (2009). https://doi.org/10.1007/s00226-009-0271-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-009-0271-4

Keywords

Navigation