Skip to main content
Log in

Relaxation behaviour of the amorphous components of wood

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The viscoelastic properties of mod were investigated using dynamic mechanical thermal analysis and differential scanning calorimetry. Under a limited set of conditions, two separate glass transitions (T g) could be identified with both techniques. These two transitions were identified as arising from the amorphous lignin and hernicellulose matrix in the wood cell wall. Moisture dramatically affected the temperature at which the two dispersions occurred and, consequently, the ability to resolve their independent responses. The relationship betweenT g and moisture for both components could be modelled with the Kwei equation, which accounts for the presence of secondary interactions. Annealing and specific interactions of a series of organic diluents were wed in an attempt to enhance the resolution of the two components values ofT g. Time-temperature superposition was shown to be applicable to wood plasticized with ethyl formamide, following Williams-Landel-Ferry behaviour over the temperature rangeT g toT g + 85° C. These observations allow certain conclusions to be drawn concerning the applicability of existing models of the wood cell wall's supermolecular morphology. Most notably, models of thein situ morphology of the three wood components can be limited to those which consider the amorphous matrix of lignin and hemicellulose to be immiscible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schniewind,Wood Sci. Tech.2 (1968) 188.

    Google Scholar 

  2. J. Bodig andB. A. Jayne, “Mechanics of Wood and Wood Composites” (Van Nostrand Reinhold, New York, 1982) Chs 5 and 6.

    Google Scholar 

  3. M. Mori, M. Norimoto andT. Yamada,Wood Res.56 (1974) 33.

    Google Scholar 

  4. W. E. Hillis andA. N. Rozsa,Holzforschung32(2) (1978) 68.

    Article  Google Scholar 

  5. W. J. Cousins,Wood Sci. Tech.10 (1976) 9.

    Article  Google Scholar 

  6. Idem, ibid.12 (1978) 161.

    Article  CAS  Google Scholar 

  7. G. M. Irvine,TAPPI67(5) (1984) 118.

    CAS  Google Scholar 

  8. T. Hatakeyama, S. Hirose andH. Hatakeyama,Makromol. Chem.184 (1983) 1265.

    Article  CAS  Google Scholar 

  9. D. A. I. Goring,Pulp Paper Mag. Can.64 (1963) t517.

    CAS  Google Scholar 

  10. R. A. Young,Wood Sci.11(2) (1978) 97.

    CAS  Google Scholar 

  11. N. L. Salmen andE. L. Back,TAPPT60(12) (1977) 137.

    CAS  Google Scholar 

  12. N. L. Salmen,J. Mater. Sci.19 (1984) 3090.

    Article  CAS  ADS  Google Scholar 

  13. C. A. Wert, M. Weller andD. Caulfield,J. Appl. Phys.56 (1984) 2453.

    Article  CAS  ADS  Google Scholar 

  14. T. Sadoh,Wood Sci. Tech.15 (1981) 67.

    Article  Google Scholar 

  15. E. L. Back andN. L. Salmen,TAPPT65(7) (1982) 107.

    Google Scholar 

  16. L. Salmen, E. Back andY. Alwarsdotter,J. Wood Chem. Tech.4(3) (1984) 347.

    Article  CAS  Google Scholar 

  17. R. F. Eaton, T. H. Tran, M. Shen, T. F. Schatzki andE. Menefee,Polym. Prepr.17(2) (1976) 54.

    Google Scholar 

  18. T. K. Kwei,J. Polym. Sci.: Polym. Lett.22 (1984) 307.

    Article  CAS  Google Scholar 

  19. I. M. Ward, “Mechanical Properties of Solid Polymers”, 2nd Edn (Wiley-Interscience, New York, 1983) Chs 5 to 8.

    Google Scholar 

  20. E. A. Turi, “Thermal Characterization of Polymeric Materials” (Academic Press, New York, 1981) Chs 2 and 4.

    Google Scholar 

  21. J. Gravitis andP. Erins,J. Appl. Polym. Sci.: Appl. Polym. Symp.37 (1983) 421.

    CAS  Google Scholar 

  22. P. Erins, V. Cinite, M. Jakobsons andJ. Gravitis,ibid.28 (1976) 1117.

    CAS  Google Scholar 

  23. T. G. Rials andW. G. Glasser,J. Wood Chem. Tech.4(3) (1984) 331.

    Article  CAS  Google Scholar 

  24. J. Halpin, in “Composite Materials Workshop”, edited by S. W. Tsai, J. C. Halpin and N. J. Pagano (Technomic Publishing Co., Stamford, Connecticut, 1967) p. 87.

    Google Scholar 

  25. A. R. Schultz andA. L. Young,Macromolecules13 (1980) 663.

    Article  ADS  Google Scholar 

  26. C. Skaar, “Water in Wood” (Syracuse University Press, Syracuse, 1972) p. 57.

    Google Scholar 

  27. E. L. Schaffer, in “General Constitutive Relations for Wood and Wood-Based Materials” (Syracuse University Press, Syracuse, 1980) p. 254.

    Google Scholar 

  28. A. Rudin, “The Elements of Polymer Science and Engineering” (Academic Press, New York, 1982) p. 433.

    Google Scholar 

  29. H. Burrell, in “Polymer Handbook”, 2nd Edn, edited by J. Bandrup and E. H. Immergut (Wiley-Interscience, New York, 1975) p. IV-337.

    Google Scholar 

  30. W. J. MacKnight, R. E. Karasz andJ. R. Fried, in “Polymer Blends”, Vol. 1, edited by D. R. Paul and S. Newman (Academic Press, New York, 1978) p. 224.

    Google Scholar 

  31. M. L. Williams, R. F. Landel andJ. D. Ferry,J. Amer. Chem. Soc.77 (1955) 3701.

    Article  CAS  Google Scholar 

  32. J. J. Aklonis andW. J. MacKnight, “Introduction to Polymer Viscoelasticity”, 2nd Edn (Wiley-Interscience, New York, 1983) Ch. 3.

    Google Scholar 

  33. B. L. Lenz,TAPPI51 (1968) 511.

    CAS  Google Scholar 

  34. H. Ishikawa andT. Nakajima,J. Jpn. Forestry Soc.36 (1954) 104.

    Google Scholar 

  35. W. Brown,J. Appl. Polym. Sci.II (1967) 2381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelley, S.S., Rials, T.G. & Glasser, W.G. Relaxation behaviour of the amorphous components of wood. J Mater Sci 22, 617–624 (1987). https://doi.org/10.1007/BF01160778

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160778

Keywords

Navigation