Theory of Computing Systems

, Volume 62, Issue 3, pp 510–532

# Improved Approximation Algorithms for Minimum Cost Node-Connectivity Augmentation Problems

Article

## Abstract

Let κ G (s, t) denote the maximum number of pairwise internally disjoint st-paths in a graph G = (V, E). For a set $$T \subseteq V$$ of terminals, G is k-T-connected if κ G (s, t) ≥ k for all s, tT; if T = V then G is k-connected. Given a root node s, G is k- (T, s)-connected if κ G (t, s) ≥ k for all tT. We consider the corresponding min-cost connectivity augmentation problems, where we are given a graph G = (V, E) of connectivity k, and an additional edge set $$\hat E$$ on V with costs. The goal is to compute a minimum cost edge set $$J \subseteq \hat {E}$$ such that $$G \cup J$$ has connectivity k + 1. For the k-T-Connectivity Augmentation problem when $$\hat {E}$$ is an edge set on T we obtain ratio $$O\left (\ln \frac {|T|}{|T|-k}\right )$$, improving the ratio $$O\left (\frac {|T|}{|T|-k} \cdot \ln \frac {|T|}{|T|-k}\right )$$ of Nutov (Combinatorica, 34(1), 95–114, 2014). For the k -Connectivity Augmentation problem we obtain the following approximation ratios. For n ≥ 3k − 5, we obtain ratio 3 for directed graphs and 4 for undirected graphs, improving the previous ratio 5 of Nutov (Combinatorica, 34(1), 95–114, 2014). For directed graphs and k = 1, or k = 2 and n odd, we further improve to 2.5 the previous ratios 3 and 4, respectively. For the undirected 2-(T, s)-Connectivity Augmentation problem we achieve ratio $$4\frac {2}{3}$$, improving the previous best ratio 12 of Nutov (ACM Trans. Algorithms, 9(1), 1, 2014). For the special case when all the edges in $$\hat E$$ are incident to s, we give a polynomial time algorithm, improving the ratio $$4\frac {17}{30}$$ of Kortsarz and Nutov, (2015) and Nutov (Algorithmica, 63(1-2), 398–410, 2012) for this variant.

## Keywords

Node-connectivity augmentation Approximation algorithm Crossing biset family

## References

1. 1.
Aazami, A., Cheriyan, J., Laekhanukit, B.: A bad example for the iterative rounding method for mincost k-connected spanning subgraphs. Discret. Optim. 10 (1), 25–41 (2013)
2. 2.
Auletta, V., Dinitz, Y., Nutov, Z., Parente, D.: A 2-approximation algorithm for finding an optimum 3-vertex-connected spanning subgraph. J. of Algorithms 32 (1), 21–30 (1999)
3. 3.
Cheriyan, J., Laekhanukit, B.: Approximation algorithms for minimum-cost k- (S, T) connected digraphs. SIAM J. Discrete Math. 27(3), 1450–1481 (2013)
4. 4.
Cheriyan, J., Laekhanukit, B., Naves, G., Vetta, A.: Approximating rooted steiner networks. ACM Trans. Algorithms 11(2), 8:1–8:22 (2014)
5. 5.
Cheriyan, J., Végh, L.: Approximating minimum-cost k-node connected subgraphs via independence-free graphs. SIAM J. Computing 43(4), 1342–1362 (2014)
6. 6.
Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the min-cost k-vertex connected subgraph. SIAM J. Computing 32(4), 1050–1055 (2003)
7. 7.
Chuzhoy, J., Khanna, S.: An O(k 3 n)-approximation algorithm for vertex-connectivity survivable network design. Theory of Computing 8(1), 401–413 (2012)
8. 8.
Dinitz, Y., Nutov, Z.: A 3-approximation algorithm for finding optimum 4,5-vertex-connected spanning subgraphs. J. of Algorithms 32(1), 31–40 (1999)
9. 9.
Fackharoenphol, J., Laekhanukit, B.: An $${O}(\log ^{2} k)$$-approximation algorithm for the k-vertex connected subgraph problem. SIAM J. Computing 41, 1095–1109 (2012)
10. 10.
Fleischer, L., Jain, K., Williamson, D.: Iterative rounding 2-approximation algorithms for minimum-cost vertex connectivity problems. J. Comput. Syst. Sci. 72 (5), 838–867 (2006)
11. 11.
Frank, A.: Rooted k-connections in digraphs. Discret. Appl. Math. 157(6), 1242–1254 (2009)
12. 12.
Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. J. of Comb. Theory B 65, 73–110 (1995)
13. 13.
Frank, A., Tardos, E.: An application of submodular flows. Linear Algebra Appl. 114/115, 329–348 (1989)
14. 14.
Fukunaga, T.: Approximating minimum cost source location problems with local vertex-connectivity demands. J. Discrete Algorithms 19, 30–38 (2013)
15. 15.
Fukunaga, T.: Approximating the generalized terminal backup problem via half-integral multiflow relaxation. SIAM J. Discrete Math. 30(2), 777–800 (2016)
16. 16.
Fukunaga, T., Nutov, Z., Ravi, R.: Iterative rounding approximation algorithms for degree-bounded node-connectivity network design. SIAM J. Computing 44(5), 1202–1229 (2015)
17. 17.
Goemans, M., Goldberg, A., Plotkin, S., Shmoys, D., Tardos, E., Williamson, D.: Improved approximation algorithms for network design problems. In: SODA, pp. 223–232 (1994)Google Scholar
18. 18.
Grandoni, F., Laekhanukit, B.: Surviving in directed graphs: A polylogarithmic approximation for two-connected directed steiner tree. To appear in STOC’17Google Scholar
19. 19.
Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)
20. 20.
Johnson, D.: Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9, 256–278 (1974)
21. 21.
Jordán, T.: On the optimal vertex-connectivity augmentation. J. on Comb. Theory B 63, 8–20 (1995)
22. 22.
Khuller, S., Raghavachari, B.: Improved approximation algorithms for uniform connectivity problems. J. of Algorithms 21, 434–450 (1996)
23. 23.
Kortsarz, G., Nutov, Z.: Approximating node connectivity problems via set covers. Algorithmica 37, 75–92 (2003)
24. 24.
Kortsarz, G., Nutov, Z.: Approximating k-node connected subgraphs via critical graphs. SIAM J. on Computing 35(1), 247–257 (2005)
25. 25.
Kortsarz, G., Nutov, Z.: Approximating source location and star survivable network problems. In: WG. To appear in Theoretical Computer Science, pp. 203–218 (2015)Google Scholar
26. 26.
Laekhanukit, B.: Parameters of two-prover-one-round game and the hardness of connectivity problems SODA, pp. 1626–1643 (2014)Google Scholar
27. 27.
Lando, Y., Nutov, Z.: Inapproximability of survivable networks. Theor. Comput. Sci. 410(21-23), 2122–2125 (2009)
28. 28.
Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13, 383–390 (1975)
29. 29.
Nutov, Z.: Approximating minimum cost connectivity problems via uncrossable bifamilies. ACM Trans. Algorithms 9(1), 1 (2012)
30. 30.
Nutov, Z.: Approximating node-connectivity augmentation problems. Algorithmica 63(1-2), 398–410 (2012)
31. 31.
Nutov, Z.: Approximating subset k-connectivity problems. J. Discrete Algorithms 17, 51–59 (2012)
32. 32.
Nutov, Z.: Approximating minimum-cost edge-covers of crossing biset families. Combinatorica 34(1), 95–114 (2014)
33. 33.
Nutov, Z.: Improved approximation algorithms for min-cost connectivity augmentation problems. In: CSR, pp. 324–339 (2016)Google Scholar
34. 34.
Ravi, R., Williamson, D.P.: An approximation algorithm for minimum-cost vertex-connectivity problems. Algorithmica 18, 21–43 (1997)
35. 35.
Ravi, R., Williamson, D.P.: Erratum: an approximation algorithm for minimum-cost vertex-connectivity problems. Algorithmica 34(1), 98–107 (2002)
36. 36.
Végh, L.: Augmenting undirected node-connectivity by one. SIAM J. Discrete Math. 25(2), 695–718 (2011)