Skip to main content

Advertisement

Log in

Association of Immune Cell Subsets with Incident Hip Fracture: The Cardiovascular Health Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

In this study, we aimed to evaluate the association of innate and adaptive immune cell subsets in peripheral blood mononuclear cells (PBMCs) with hip fracture. To conduct this study, we used data from the Cardiovascular Health Study (CHS), a U.S. multicenter observational cohort of community-dwelling men and women aged ≥ 65 years. Twenty-five immune cell phenotypes were measured by flow cytometry from cryopreserved PBMCs of CHS participants collected in 1998–1999. The natural killer (NK), γδ T, T helper 17 (Th17), and differentiated/senescent CD4+CD28 T cell subsets were pre-specified as primary subsets of interest. Hip fracture incidence was assessed prospectively by review of hospitalization records. Multivariable Cox hazard models evaluated associations of immune cell phenotypes with incident hip fracture in sex-stratified and combined analyses. Among 1928 persons, 259 hip fractures occurred over a median 9.7 years of follow-up. In women, NK cells were inversely associated with hip fracture [hazard ratio (HR) 0.77, 95% confidence interval (CI) 0.60–0.99 per one standard deviation higher value] and Th17 cells were positively associated with hip fracture [HR 1.18, 95% CI 1.01–1.39]. In men, γδ T cells were inversely associated with hip fracture [HR 0.60, 95% CI 0.37–0.98]. None of the measured immune cell phenotypes were significantly associated with hip fracture incidence in combined analyses. In this large prospective cohort of older adults, potentially important sex differences in the associations of immune cell phenotypes and hip fracture were identified. However, immune cell phenotypes had no association with hip fracture in analyses combining men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braithwaite RS, Col NF, Wong JB (2003) Estimating hip fracture morbidity, mortality and costs. J Am Geriatr Soc 51(3):364–370

    Article  PubMed  Google Scholar 

  2. Cauley JA, Barbour KE, Harrison SL, Cloonan YK, Danielson ME, Ensrud KE et al (2016) Inflammatory markers and the risk of hip and vertebral fractures in men: the osteoporotic fractures in men (MrOS). J Bone Miner Res 31(12):2129–2138

    Article  CAS  PubMed  Google Scholar 

  3. Barbour KE, Lui LY, Ensrud KE, Hillier TA, LeBlanc ES, Ing SW et al (2014) Inflammatory markers and risk of hip fracture in older white women: the study of osteoporotic fractures. J Bone Miner Res 29(9):2057–2064

    Article  CAS  PubMed  Google Scholar 

  4. Bethel M, Bůžková P, Fink HA, Robbins JA, Cauley JA, Lee J et al (2016) Soluble CD14 and fracture risk. Osteoporos Int 27(5):1755–1763

    Article  CAS  PubMed  Google Scholar 

  5. Dar HY, Azam Z, Anupam R, Mondal RK, Srivastava RK (2018) Osteoimmunology: the nexus between bone and immune system. Front Biosci 23:464–492

    Article  CAS  Google Scholar 

  6. Srivastava RK, Dar HY, Mishra PK (2018) Immunoporosis: immunology of osteoporosis-role of t cells. Front Immunol 9:657

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hu M, Bassett JH, Danks L, Howell PG, Xu K, Spanoudakis E et al (2011) Activated invariant NKT cells regulate osteoclast development and function. J Immunol 186(5):2910–2917

    Article  CAS  PubMed  Google Scholar 

  8. Fessler J, Husic R, Schwetz V, Lerchbaum E, Aberer F, Fasching P et al (2018) Senescent T-cells promote bone loss in rheumatoid arthritis. Front Immunol 9:95

    Article  PubMed  PubMed Central  Google Scholar 

  9. Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y et al (2010) Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther 12(1):R29

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103(9):1345–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uluçkan Ö, Jimenez M, Karbach S, Jeschke A, Graña O, Keller J et al (2016) Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts. Sci Transl Med. 8(330):330ra37

    Article  PubMed  Google Scholar 

  12. Chabaud M, Lubberts E, Joosten L, van Den Berg W, Miossec P (2001) IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 3(3):168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10(7):479–489

    Article  CAS  PubMed  Google Scholar 

  14. Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y et al (2016) IL-17-producing γδ T cells enhance bone regeneration. Nat Commun 7:10928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi M, Kim MO, Lee J, Jeong J, Sung Y, Park S et al (2019) Hepatic serum amyloid A1 upregulates interleukin-17 (IL-17) in γδ T cells through Toll-like receptor 2 and is associated with psoriatic symptoms in transgenic mice. Scand J Immunol 89(6):e12764

    Article  PubMed  Google Scholar 

  16. Schmidt T, Schwinge D, Rolvien T, Jeschke A, Schmidt C, Neven M et al (2019) Th17 cell frequency is associated with low bone mass in primary sclerosing cholangitis. J Hepatol 70(5):941–953

    Article  CAS  PubMed  Google Scholar 

  17. Pappalardo A, Thompson K (2013) Activated γδ T cells inhibit osteoclast differentiation and resorptive activity in vitro. Clin Exp Immunol 174(2):281–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Breuil V, Ticchioni M, Testa J, Roux CH, Ferrari P, Breittmayer JP et al (2010) Immune changes in post-menopausal osteoporosis: the immunos study. Osteoporos Int 21(5):805–814

    Article  CAS  PubMed  Google Scholar 

  19. Imai Y, Tsunenari T, Fukase M, Fujita T (1990) Quantitative bone histomorphometry and circulating T lymphocyte subsets in postmenopausal osteoporosis. J Bone Miner Res 5(4):393–399

    Article  CAS  PubMed  Google Scholar 

  20. Zhao R, Wang X, Feng F (2016) Upregulated cellular expression of IL-17 by CD4+ T-cells in osteoporotic postmenopausal women. Ann Nutr Metab 68(2):113–118

    Article  CAS  PubMed  Google Scholar 

  21. Valderrábano RJ, Lui LY, Lee J, Cummings SR, Orwoll ES, Hoffman AR et al (2017) Bone density loss is associated with blood cell counts. J Bone Miner Res 32(2):212–220

    Article  PubMed  Google Scholar 

  22. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA et al (1991) The cardiovascular health study: design and rationale. Ann Epidemiol 1(3):263–276

    Article  CAS  PubMed  Google Scholar 

  23. Tell GS, Fried LP, Hermanson B, Manolio TA, Newman AB, Borhani NO (1993) Recruitment of adults 65 years and older as participants in the cardiovascular health study. Ann Epidemiol 3(4):358–366

    Article  CAS  PubMed  Google Scholar 

  24. Olson NC, Sitlani CM, Doyle MF, Huber SA, Landay AL, Tracy RP et al (2020) Innate and adaptive immune cell subsets as risk factors for coronary heart disease in two population-based cohorts. Atherosclerosis 300:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Psaty BM, Lee M, Savage PJ, Rutan GH, German PS, Lyles M (1992) Assessing the use of medications in the elderly: methods and initial experience in the cardiovascular health study. The cardiovascular health study collaborative research group. J Clin Epidemiol 45(6):683–92

    Article  CAS  PubMed  Google Scholar 

  26. Taylor HL, Jacobs DR Jr, Schucker B, Knudsen J, Leon AS, Debacker G (1978) A questionnaire for the assessment of leisure time physical activities. J Chronic Dis 31(12):741–755

    Article  CAS  PubMed  Google Scholar 

  27. Tracy RP, Doyle MF, Olson NC, Huber SA, Jenny NS, Sallam R et al (2013) T-helper type 1 bias in healthy people is associated with cytomegalovirus serology and atherosclerosis: the multi-ethnic study of atherosclerosis. J Am Heart Assoc 2(3):e000117

    Article  PubMed  PubMed Central  Google Scholar 

  28. Olson NC, Doyle MF, Jenny NS, Huber SA, Psaty BM, Kronmal RA et al (2013) Decreased naive and increased memory CD4(+) T cells are associated with subclinical atherosclerosis: the multi-ethnic study of atherosclerosis. PLoS ONE 8(8):e71498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y et al (2021) New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med 385(19):1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cawthon PM (2011) Gender differences in osteoporosis and fractures. Clin Orthop Relat Res 469(7):1900–1905

    Article  PubMed  PubMed Central  Google Scholar 

  31. Porcelli T, Maffezzoni F, Pezzaioli LC, Delbarba A, Cappelli C, Ferlin A (2020) Management of endocrine disease: male osteoporosis: diagnosis and management - should the treatment and the target be the same as for female osteoporosis? Eur J Endocrinol 183(3):R75-r93

    Article  CAS  PubMed  Google Scholar 

  32. Nordström P, Toots A, Gustafson Y, Thorngren KG, Hommel A, Nordström A (2017) Bisphosphonate use after hip fracture in older adults: a nationwide retrospective cohort study. J Am Med Dir Assoc 18(6):515–521

    Article  PubMed  Google Scholar 

  33. Black DM, Reid IR, Napoli N, Ewing SK, Shiraki M, Nakamura T et al (2022) The interaction of acute-phase reaction and efficacy for osteoporosis after zoledronic acid: horizon pivotal fracture trial. J Bone Miner Res 37(1):21–28

    Article  CAS  PubMed  Google Scholar 

  34. Adami G, Fassio A, Gatti D, Viapiana O, Rossini M (2022) Acute phase reaction and fracture risk reduction: are gamma-delta T cells and hypovitaminosis d the missing link? J Bone Miner Res 37(8):1622

    Article  PubMed  Google Scholar 

  35. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  36. Hoff P, Gaber T, Strehl C, Jakstadt M, Hoff H, Schmidt-Bleek K et al (2017) A pronounced inflammatory activity characterizes the early fracture healing phase in immunologically restricted patients. Int J Mol Sci. https://doi.org/10.3390/ijms18030583

    Article  PubMed  PubMed Central  Google Scholar 

  37. García-Alvarez F, González P, Navarro-Zorraquino M, Larrad L, García-Alvarez I, Pastor C et al (2008) Immune cell variations in patients with hip fracture. Arch Gerontol Geriatr 46(2):117–124

    Article  PubMed  Google Scholar 

  38. Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D (2012) Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS ONE 7(9):e44552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dar HY, Pal S, Shukla P, Mishra PK, Tomar GB, Chattopadhyay N et al (2018) Bacillus clausii inhibits bone loss by skewing Treg-Th17 cell equilibrium in postmenopausal osteoporotic mice model. Nutrition 54:118–128

    Article  CAS  PubMed  Google Scholar 

  40. Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J et al (2016) Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 126(6):2049–2063

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yu M, Pal S, Paterson CW, Li JY, Tyagi AM, Adams J et al (2021) Ovariectomy induces bone loss via microbial-dependent trafficking of intestinal TNF+ T cells and Th17 cells. J Clin Invest. https://doi.org/10.1172/JCI143137

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X et al (2007) IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117(1):122–132

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen A, Miller WP, Gupta A, Lund TC, Schiferl D, Lam LSK et al (2022) Open-label pilot study of interferon gamma-1b in patients with non-infantile osteopetrosis. JBMR Plus 6(3):e10597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sekiguchi DR, Smith SB, Sutter JA, Goodman NG, Propert K, Louzoun Y et al (2011) Circulating lymphocyte subsets in normal adults are variable and can be clustered into subgroups. Cytometry B Clin Cytom 80(5):291–299

    Article  PubMed  Google Scholar 

  45. Backteman K, Ernerudh J (2007) Biological and methodological variation of lymphocyte subsets in blood of human adults. J Immunol Methods 322(1–2):20–27

    Article  CAS  PubMed  Google Scholar 

  46. Olson NC, Sallam R, Doyle MF, Tracy RP, Huber SA (2013) T helper cell polarization in healthy people: implications for cardiovascular disease. J Cardiovasc Transl Res 6(5):772–786

    Article  PubMed  PubMed Central  Google Scholar 

  47. Olson NC, Doyle MF, de Boer IH, Huber SA, Jenny NS, Kronmal RA et al (2015) Associations of circulating lymphocyte subpopulations with type 2 diabetes: cross-sectional results from the multi-ethnic study of atherosclerosis (MESA). PLoS ONE 10(10):e0139962

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang W, Nilles TL, Johnson JR, Margolick JB (2016) The effect of cellular isolation and cryopreservation on the expression of markers identifying subsets of regulatory T cells. J Immunol Methods 431:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thyagarajan B, Barcelo H, Crimmins E, Weir D, Minnerath S, Vivek S et al (2018) Effect of delayed cell processing and cryopreservation on immunophenotyping in multicenter population studies. J Immunol Methods 463:61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research reported in this article was supported by R01HL120854 and R01HL135625 from the National Heart, Lung, and Blood Institute (NHLBI) and contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, 75N92021D00006, and grants U01HL080295 and U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. Rick Saha, MD’s participation in this work was made possible by funding from the Rheumatology Research Foundation Medical & Graduate Student Research Preceptorship. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs, the National Institutes of Health, the Rheumatology Research Foundation or the United States government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel E. Elam.

Ethics declarations

Conflict of interest

Bruce M. Psaty serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. Rachel E. Elam, Petra Bůžková, Joseph A.C. Delaney, Howard A. Fink, Joshua I. Barzilay, Laura D. Carbone, Rick Saha, John A. Robbins, Kenneth J. Mukamal, Rodrigo J Valderrábano, Russell P. Tracy, Nels C. Olson, Sally A. Huber, Margaret F. Doyle, Alan L. Landay, and Jane A. Cauley declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The Cardiovascular Health Study (CHS) was approved by the Institutional Review Board (IRB) at each study site. All participants gave written informed consent. The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 349 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elam, R.E., Bůžková, P., Delaney, J.A.C. et al. Association of Immune Cell Subsets with Incident Hip Fracture: The Cardiovascular Health Study. Calcif Tissue Int 113, 581–590 (2023). https://doi.org/10.1007/s00223-023-01126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-023-01126-8

Keywords

Navigation