Skip to main content

Advertisement

Log in

T Helper Cell Polarization in Healthy People: Implications for Cardiovascular Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic inflammatory disease characterized by T lymphocyte infiltration into the atherosclerotic plaque. Assessments of T cell subtypes have demonstrated a predominance of CD4+ T helper (Th) cells, implicated Th1 and Th17 immunity in both human and mouse atherogenesis, and provided some evidence suggesting protective roles of Th2 and T regulatory cells. Observations that certain inbred mouse strains have an inherent T helper bias suggest a genetic predisposition toward developing a particular T helper phenotype. This review summarizes our current understanding of mechanisms of antigen processing for major histocompatibility complex molecules, describes the different T helper cell subsets and their roles in atherosclerosis, and discusses mechanisms of genetic predisposition toward Th1/Th2 bias in mice. We also present data from our laboratory demonstrating inherent Th1/Th2 phenotypes in apparently healthy human volunteers that are stable over time and discuss the potential implications for cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fogg, D. K., Sibon, C., Miled, C., Jung, S., Aucouturier, P., Littman, D. R., Cumano, A., & Geissmann, F. (2006). A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science, 311(5757), 83–87.

    PubMed  CAS  Google Scholar 

  2. Jongstra-Bilen, J., Haidari, M., Zhu, S. N., Chen, M., Guha, D., & Cybulsky, M. I. (2006). Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. The Journal of Experimental Medicine, 203(9), 2073–2083.

    PubMed  CAS  Google Scholar 

  3. Koltsova, E. K., & Ley, K. (2011). How dendritic cells shape atherosclerosis. Trends in Immunology, 32(11), 540–547.

    PubMed  CAS  Google Scholar 

  4. Woollard, K. J., & Geissmann, F. (2010). Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 7(2), 77–86.

    PubMed  Google Scholar 

  5. Paulson, K. E., Zhu, S. N., Chen, M., Nurmohamed, S., Jongstra-Bilen, J., & Cybulsky, M. I. (2010). Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circulation Research, 106(2), 383–390.

    PubMed  CAS  Google Scholar 

  6. Jonasson, L., Holm, J., Skalli, O., Bondjers, G., & Hansson, G. K. (1986). Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis, 6(2), 131–138.

    PubMed  CAS  Google Scholar 

  7. Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology, 6(7), 508–519.

    PubMed  CAS  Google Scholar 

  8. Frostegard, J., Ulfgren, A. K., Nyberg, P., Hedin, U., Swedenborg, J., Andersson, U., & Hansson, G. K. (1999). Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis, 145(1), 33–43.

    PubMed  CAS  Google Scholar 

  9. Paulsson, G., Zhou, X., Tornquist, E., & Hansson, G. K. (2000). Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(1), 10–17.

    PubMed  CAS  Google Scholar 

  10. Stemme, S., Holm, J., & Hansson, G. K. (1992). T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arteriosclerosis and Thrombosis, 12(2), 206–211.

    PubMed  CAS  Google Scholar 

  11. Zhou, X., Nicoletti, A., Elhage, R., & Hansson, G. K. (2000). Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation, 102(24), 2919–2922.

    PubMed  CAS  Google Scholar 

  12. Huber, S., Sakkinen, M., David, C., Newell, M., & Tracy, R. (2001). T helper cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation, 103, 2610–2616.

    PubMed  CAS  Google Scholar 

  13. Hansson, G. K., Jonasson, L., Holm, J., & Claesson-Welsh, L. (1986). Class II MHC antigen expression in the atherosclerotic plaque: smooth muscle cells express HLA-DR, HLA-DQ and the invariant gamma chain. Clinical and Experimental Immunology, 64(2), 261–268.

    PubMed  CAS  Google Scholar 

  14. Stemme, S., Faber, B., Holm, J., Wiklund, O., Witztum, J. L., & Hansson, G. K. (1995). T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 92(9), 3893–3897.

    PubMed  CAS  Google Scholar 

  15. Zhu, J., Yamane, H., & Paul, W. E. (2010). Differentiation of effector CD4 T cell populations*. Annual Review of Immunology, 28, 445–489.

    PubMed  CAS  Google Scholar 

  16. Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K., & O'Shea, J. J. (2012). Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annual Review of Immunology, 30, 707–731.

    PubMed  CAS  Google Scholar 

  17. Mosmann, T., & Coffman, R. (1989). Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annual Review of Immunology, 7, 145–173.

    PubMed  CAS  Google Scholar 

  18. Lieberman, L. A., Banica, M., Reiner, S. L., & Hunter, C. A. (2004). STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis. Journal of Immunology, 172(1), 457–463.

    CAS  Google Scholar 

  19. Schulz, E. G., Mariani, L., Radbruch, A., & Hofer, T. (2009). Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity, 30(5), 673–683.

    PubMed  CAS  Google Scholar 

  20. Wan, Y. Y. (2010). Multi-tasking of helper T cells. Immunology, 130(2), 166–171.

    PubMed  CAS  Google Scholar 

  21. Jager, A., & Kuchroo, V. K. (2010). Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scandinavian Journal of Immunology, 72(3), 173–184.

    PubMed  CAS  Google Scholar 

  22. Aggarwal, S., & Gurney, A. L. (2002). IL-17: prototype member of an emerging cytokine family. Journal of Leukocyte Biology, 71(1), 1–8.

    PubMed  CAS  Google Scholar 

  23. Jovanovic, D. V., Di Battista, J. A., Martel-Pelletier, J., Jolicoeur, F. C., He, Y., Zhang, M., Mineau, F., & Pelletier, J. P. (1998). IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. Journal of Immunology, 160(7), 3513–3521.

    CAS  Google Scholar 

  24. Marwaha, A. K., Leung, N. J., McMurchy, A. N., & Levings, M. K. (2012). TH17 Cells in autoimmunity and immunodeficiency: protective or pathogenic? Frontiers in Immunology, 3, 129.

    PubMed  Google Scholar 

  25. Torgerson, T. R. (2006). Regulatory T cells in human autoimmune diseases. Springer Seminars in Immunopathology, 28(1), 63–76.

    PubMed  CAS  Google Scholar 

  26. Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133(5), 775–787.

    PubMed  CAS  Google Scholar 

  27. Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology, 6(4), 345–352.

    PubMed  CAS  Google Scholar 

  28. Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), 1057–1061.

    PubMed  CAS  Google Scholar 

  29. Malek, T. R., & Bayer, A. L. (2004). Tolerance, not immunity, crucially depends on IL-2. Nature Reviews Immunology, 4(9), 665–674.

    PubMed  CAS  Google Scholar 

  30. Ray, A., Khare, A., Krishnamoorthy, N., Qi, Z., & Ray, P. (2010). Regulatory T cells in many flavors control asthma. Mucosal Immunology, 3(3), 216–229.

    PubMed  CAS  Google Scholar 

  31. Ozdemir, C., Akdis, M., & Akdis, C. A. (2009). T regulatory cells and their counterparts: masters of immune regulation. Clinical and Experimental Allergy, 39(5), 626–639.

    PubMed  CAS  Google Scholar 

  32. Chtanova, T., Tangye, S. G., Newton, R., Frank, N., Hodge, M. R., Rolph, M. S., & Mackay, C. R. (2004). T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. Journal of Immunology, 173(1), 68–78.

    CAS  Google Scholar 

  33. Kim, C. H., Lim, H. W., Kim, J. R., Rott, L., Hillsamer, P., & Butcher, E. C. (2004). Unique gene expression program of human germinal center T helper cells. Blood, 104(7), 1952–1960.

    PubMed  CAS  Google Scholar 

  34. King, C., Tangye, S. G., & Mackay, C. R. (2008). T follicular helper (TFH) cells in normal and dysregulated immune responses. Annual Review of Immunology, 26, 741–766.

    PubMed  CAS  Google Scholar 

  35. Vinuesa, C. G., Tangye, S. G., Moser, B., & Mackay, C. R. (2005). Follicular B helper T cells in antibody responses and autoimmunity. Nature Reviews Immunology, 5(11), 853–865.

    PubMed  CAS  Google Scholar 

  36. Haynes, N. M. (2008). Follicular associated T cells and their B-cell helper qualities. Tissue Antigens, 71(2), 97–104.

    PubMed  CAS  Google Scholar 

  37. King, C. (2011). A fine romance: T follicular helper cells and B cells. Immunity, 34(6), 827–829.

    PubMed  CAS  Google Scholar 

  38. van Leeuwen, M., Damoiseaux, J., Duijvestijn, A., & Tervaert, J. W. (2009). The therapeutic potential of targeting B cells and anti-oxLDL antibodies in atherosclerosis. Autoimmunity Reviews, 9(1), 53–57.

    PubMed  Google Scholar 

  39. Zhou, L., Chong, M. M., & Littman, D. R. (2009). Plasticity of CD4+ T cell lineage differentiation. Immunity, 30(5), 646–655.

    PubMed  CAS  Google Scholar 

  40. Korn, T., Mitsdoerffer, M., Croxford, A. L., Awasthi, A., Dardalhon, V. A., Galileos, G., Vollmar, P., Stritesky, G. L., Kaplan, M. H., Waisman, A., et al. (2008). IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18460–18465.

    PubMed  CAS  Google Scholar 

  41. Lee, Y. K., Turner, H., Maynard, C. L., Oliver, J. R., Chen, D., Elson, C. O., & Weaver, C. T. (2009). Late developmental plasticity in the T helper 17 lineage. Immunity, 30(1), 92–107.

    PubMed  CAS  Google Scholar 

  42. Hegazy, A. N., Peine, M., Helmstetter, C., Panse, I., Frohlich, A., Bergthaler, A., Flatz, L., Pinschewer, D. D., Radbruch, A., & Lohning, M. (2010). Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity, 32(1), 116–128.

    PubMed  CAS  Google Scholar 

  43. Wei, G., Wei, L., Zhu, J., Zang, C., Hu-Li, J., Yao, Z., Cui, K., Kanno, Y., Roh, T. Y., Watford, W. T., et al. (2009). Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity, 30(1), 155–167.

    PubMed  Google Scholar 

  44. Benagiano, M., Azzurri, A., Ciervo, A., Amedei, A., Tamburini, C., Ferrari, M., Telford, J. L., Baldari, C. T., Romagnani, S., Cassone, A., et al. (2003). T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6658–6663.

    PubMed  CAS  Google Scholar 

  45. Tracy, R. P., Doyle, M. F., Olson, N. C., Huber, S. A., Jenny, N. S., Sallam, R., Psaty, B. M., & Kronmal, R. A. (2013). T-helper type 1 bias in healthy people is associated with cytomegalovirus serology and atherosclerosis: the multi-ethnic study of atherosclerosis. J Am Heart Assoc, 2(3), e000117.

    PubMed  Google Scholar 

  46. Engelbertsen, D., Andersson, L., Ljungcrantz, I., Wigren, M., Hedblad, B., Nilsson, J., & Bjorkbacka, H. (2013). T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(3), 637–644.

    PubMed  CAS  Google Scholar 

  47. Buono, C., Binder, C. J., Stavrakis, G., Witztum, J. L., Glimcher, L. H., & Lichtman, A. H. (2005). T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1596–1601.

    PubMed  CAS  Google Scholar 

  48. Gupta, S., Pablo, A. M., Jiang, X., Wang, N., Tall, A. R., & Schindler, C. (1997). IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. The Journal of Clinical Investigation, 99(11), 2752–2761.

    PubMed  CAS  Google Scholar 

  49. Davenport, P., & Tipping, P. G. (2003). The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. American Journal of Pathology, 163(3), 1117–1125.

    PubMed  CAS  Google Scholar 

  50. Elhage, R., Jawien, J., Rudling, M., Ljunggren, H. G., Takeda, K., Akira, S., Bayard, F., & Hansson, G. K. (2003). Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovascular Research, 59(1), 234–240.

    PubMed  CAS  Google Scholar 

  51. Huber, S., Sakkinen, P., Conce, D., Hardin, N., & Tracy, R. (1999). Interleukin-6 exacerbates early atherosclerosis in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 2364–2367.

    PubMed  CAS  Google Scholar 

  52. Lee, T. S., Yen, H. C., Pan, C. C., & Chau, L. Y. (1999). The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(3), 734–742.

    PubMed  CAS  Google Scholar 

  53. Whitman, S. C., Ravisankar, P., & Daugherty, A. (2002). Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circulation Research, 90(2), E34–E38.

    PubMed  CAS  Google Scholar 

  54. Whitman, S. C., Ravisankar, P., Elam, H., & Daugherty, A. (2000). Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/− mice. American Journal of Pathology, 157(6), 1819–1824.

    PubMed  CAS  Google Scholar 

  55. Zhou, X. (2003). CD4+ T cells in atherosclerosis. Biomedicine and Pharmacotherapy, 57(7), 287–291.

    PubMed  CAS  Google Scholar 

  56. Ouyang, W., Ranganath, S. H., Weindel, K., Bhattacharya, D., Murphy, T. L., Sha, W. C., & Murphy, K. M. (1998). Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity, 9(5), 745–755.

    PubMed  CAS  Google Scholar 

  57. Hart, P. H., Vitti, G. F., Burgess, D. R., Whitty, G. A., Piccoli, D. S., & Hamilton, J. A. (1989). Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proceedings of the National Academy of Sciences of the United States of America, 86(10), 3803–3807.

    PubMed  CAS  Google Scholar 

  58. Larche, M., Robinson, D. S., & Kay, A. B. (2003). The role of T lymphocytes in the pathogenesis of asthma. The Journal of Allergy and Clinical Immunology, 111(3), 450–463. quiz 464.

    PubMed  CAS  Google Scholar 

  59. King, V. L., Szilvassy, S. J., & Daugherty, A. (2002). Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(3), 456–461.

    PubMed  CAS  Google Scholar 

  60. King, V. L., Cassis, L. A., & Daugherty, A. (2007). Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. American Journal of Pathology, 171(6), 2040–2047.

    PubMed  CAS  Google Scholar 

  61. Butcher, M., & Galkina, E. (2011). Current views on the functions of interleukin-17A-producing cells in atherosclerosis. Thrombosis and Haemostasis, 106(5), 787–795.

    PubMed  CAS  Google Scholar 

  62. Liu, Z., Lu, F., Pan, H., Zhao, Y., Wang, S., Sun, S., Li, J., Hu, X., & Wang, L. (2012). Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication. Atherosclerosis, 221(1), 232–241.

    PubMed  CAS  Google Scholar 

  63. Madhur, M. S., Funt, S. A., Li, L., Vinh, A., Chen, W., Lob, H. E., Iwakura, Y., Blinder, Y., Rahman, A., Quyyumi, A. A., et al. (2011). Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(7), 1565–1572.

    PubMed  CAS  Google Scholar 

  64. Erbel, C., Chen, L., Bea, F., Wangler, S., Celik, S., Lasitschka, F., Wang, Y., Bockler, D., Katus, H. A., & Dengler, T. J. (2009). Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. Journal of Immunology, 183(12), 8167–8175.

    CAS  Google Scholar 

  65. Smith, E., Prasad, K. M., Butcher, M., Dobrian, A., Kolls, J. K., Ley, K., & Galkina, E. (2010). Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation, 121(15), 1746–1755.

    PubMed  CAS  Google Scholar 

  66. Gao, Q., Jiang, Y., Ma, T., Zhu, F., Gao, F., Zhang, P., Guo, C., Wang, Q., Wang, X., Ma, C., et al. (2010). A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. Journal of Immunology, 185(10), 5820–5827.

    CAS  Google Scholar 

  67. van Es, T., van Puijvelde, G. H., Ramos, O. H., Segers, F. M., Joosten, L. A., van den Berg, W. B., Michon, I. M., de Vos, P., van Berkel, T. J., & Kuiper, J. (2009). Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochemical and Biophysical Research Communications, 388(2), 261–265.

    PubMed  Google Scholar 

  68. Cheng, X., Taleb, S., Wang, J., Tang, T. T., Chen, J., Gao, X. L., Yao, R., Xie, J. J., Yu, X., Xia, N., et al. (2011). Inhibition of IL-17A in atherosclerosis. Atherosclerosis, 215(2), 471–474.

    PubMed  CAS  Google Scholar 

  69. Butcher, M. J., Gjurich, B. N., Phillips, T., & Galkina, E. V. (2012). The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment. Circulation Research, 110(5), 675–687.

    PubMed  CAS  Google Scholar 

  70. Taleb, S., Romain, M., Ramkhelawon, B., Uyttenhove, C., Pasterkamp, G., Herbin, O., Esposito, B., Perez, N., Yasukawa, H., Van Snick, J., et al. (2009). Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. The Journal of Experimental Medicine, 206(10), 2067–2077.

    PubMed  CAS  Google Scholar 

  71. Sasaki, N., Yamashita, T., Takeda, M., & Hirata, K. (2012). Regulatory T cells in atherogenesis. Journal of Atherosclerosis and Thrombosis, 19(6), 503–515.

    PubMed  Google Scholar 

  72. George, J., Schwartzenberg, S., Medvedovsky, D., Jonas, M., Charach, G., Afek, A., & Shamiss, A. (2012). Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis, 222(2), 519–523.

    PubMed  CAS  Google Scholar 

  73. Wigren, M., Bjorkbacka, H., Andersson, L., Ljungcrantz, I., Fredrikson, G. N., Persson, M., Bryngelsson, C., Hedblad, B., & Nilsson, J. (2012). Low levels of circulating CD4 + FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(8), 2000–2004.

    PubMed  CAS  Google Scholar 

  74. Ammirati, E., Cianflone, D., Banfi, M., Vecchio, V., Palini, A., De Metrio, M., Marenzi, G., Panciroli, C., Tumminello, G., Anzuini, A., et al. (2010). Circulating CD4 + CD25hiCD127lo regulatory T-cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(9), 1832–1841.

    PubMed  CAS  Google Scholar 

  75. Mor, A., Planer, D., Luboshits, G., Afek, A., Metzger, S., Chajek-Shaul, T., Keren, G., & George, J. (2007). Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(4), 893–900.

    PubMed  CAS  Google Scholar 

  76. Sasaki, N., Yamashita, T., Takeda, M., Shinohara, M., Nakajima, K., Tawa, H., Usui, T., & Hirata, K. (2009). Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation, 120(20), 1996–2005.

    PubMed  CAS  Google Scholar 

  77. Mallat, Z., Gojova, A., Brun, V., Esposito, B., Fournier, N., Cottrez, F., Tedgui, A., & Groux, H. (2003). Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation, 108(10), 1232–1237.

    PubMed  CAS  Google Scholar 

  78. Meng, X., Zhang, K., Li, J., Dong, M., Yang, J., An, G., Qin, W., Gao, F., Zhang, C., & Zhang, Y. (2012). Statins induce the accumulation of regulatory T cells in atherosclerotic plaque. Molecular Medicine, 18, 598–605.

    PubMed  CAS  Google Scholar 

  79. Dietrich, T., Hucko, T., Schneemann, C., Neumann, M., Menrad, A., Willuda, J., Atrott, K., Stibenz, D., Fleck, E., Graf, K., et al. (2012). Local delivery of IL-2 reduces atherosclerosis via expansion of regulatory T cells. Atherosclerosis, 220(2), 329–336.

    PubMed  CAS  Google Scholar 

  80. Wadwa, R. P., Kinney, G. L., Ogden, L., Snell-Bergeon, J. K., Maahs, D. M., Cornell, E., Tracy, R. P., & Rewers, M. (2006). Soluble interleukin-2 receptor as a marker for progression of coronary artery calcification in type 1 diabetes. The International Journal of Biochemistry & Cell Biology, 38(5–6), 996–1003.

    CAS  Google Scholar 

  81. Sakamoto, A., Ishizaka, N., Saito, K., Imai, Y., Morita, H., Koike, K., Kohro, T., & Nagai, R. (2012). Serum levels of IgG4 and soluble interleukin-2 receptor in patients with coronary artery disease. Clinica Chimica Acta, 413(5–6), 577–581.

    CAS  Google Scholar 

  82. Elkind, M. S., Rundek, T., Sciacca, R. R., Ramas, R., Chen, H. J., Boden-Albala, B., Rabbani, L., & Sacco, R. L. (2005). Interleukin-2 levels are associated with carotid artery intima-media thickness. Atherosclerosis, 180(1), 181–187.

    PubMed  CAS  Google Scholar 

  83. Reiner, S. L., & Locksley, R. M. (1995). The regulation of immunity to Leishmania major. Annual Review of Immunology, 13, 151–177.

    PubMed  CAS  Google Scholar 

  84. Kosarova, M., Havelkova, H., Krulova, M., Demant, P., & Lipoldova, M. (1999). The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by locus Cypr1 and by loci Cypr2 and Cypr3, respectively. Immunogenetics, 49(2), 134–141.

    PubMed  CAS  Google Scholar 

  85. Zhang, F., Liang, Z., Matsuki, N., Van Kaer, L., Joyce, S., Wakeland, E. K., & Aune, T. M. (2003). A murine locus on chromosome 18 controls NKT cell homeostasis and Th cell differentiation. Journal of Immunology, 171(9), 4613–4620.

    CAS  Google Scholar 

  86. Baguet, A., Epler, J., Wen, K. W., & Bix, M. (2004). A Leishmania major response locus identified by interval-specific congenic mapping of a T helper type 2 cell bias-controlling quantitative trait locus. The Journal of Experimental Medicine, 200(12), 1605–1612.

    PubMed  CAS  Google Scholar 

  87. Choi, P., Xanthaki, D., Rose, S. J., Haywood, M., Reiser, H., & Morley, B. J. (2005). Linkage analysis of the genetic determinants of T-cell IL-4 secretion, and identification of Flj20274 as a putative candidate gene. Genes and Immunity, 6(4), 290–297.

    PubMed  CAS  Google Scholar 

  88. Okamoto, M., Van Stry, M., Chung, L., Koyanagi, M., Sun, X., Suzuki, Y., Ohara, O., Kitamura, H., Hijikata, A., Kubo, M., et al. (2009). Mina, an Il4 repressor, controls T helper type 2 bias. Nature Immunology, 10(8), 872–879.

    PubMed  CAS  Google Scholar 

  89. Gourh, P., Agarwal, S. K., Divecha, D., Assassi, S., Paz, G., Arora-Singh, R. K., Reveille, J. D., Shete, S., Mayes, M. D., Arnett, F. C., et al. (2009). Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis and Rheumatism, 60(12), 3794–3806.

    PubMed  CAS  Google Scholar 

  90. Weng, N. P., Araki, Y., & Subedi, K. (2012). The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nature Reviews Immunology, 12(4), 306–315.

    PubMed  CAS  Google Scholar 

  91. Yamashita, M., Hirahara, K., Shinnakasu, R., Hosokawa, H., Norikane, S., Kimura, M. Y., Hasegawa, A., & Nakayama, T. (2006). Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity, 24(5), 611–622.

    PubMed  CAS  Google Scholar 

  92. Misu, T., Onodera, H., Fujihara, K., Matsushima, K., Yoshie, O., Okita, N., Takase, S., & Itoyama, Y. (2001). Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. Journal of Neuroimmunology, 114(1–2), 207–212.

    PubMed  CAS  Google Scholar 

  93. Robinson, D. S. (2010). The role of the T cell in asthma. The Journal of Allergy and Clinical Immunology, 126(6), 1081–1091. quiz 1092–1083.

    PubMed  CAS  Google Scholar 

  94. Huber, S. A. (2009). Depletion of gammadelta+ T cells increases CD4+ FoxP3 (T regulatory) cell response in coxsackievirus B3-induced myocarditis. Immunology, 127(4), 567–576.

    PubMed  CAS  Google Scholar 

  95. Sakkinen, P. A., Macy, E. M., Callas, P. W., Cornell, E. S., Hayes, T. E., Kuller, L. H., & Tracy, R. P. (1999). Analytical and biologic variability in measures of hemostasis, fibrinolysis, and inflammation: assessment and implications for epidemiology. American Journal of Epidemiology, 149(3), 261–267.

    PubMed  CAS  Google Scholar 

  96. Stavnezer, J. (1996). Immunoglobulin class switching. Current Opinion in Immunology, 8(2), 199–205.

    PubMed  CAS  Google Scholar 

  97. Widhe, M., Ekerfelt, C., Forsberg, P., Bergstrom, S., & Ernerudh, J. (1998). IgG subclasses in Lyme borreliosis: a study of specific IgG subclass distribution in an interferon-gamma-predominated disease. Scandinavian Journal of Immunology, 47(6), 575–581.

    PubMed  CAS  Google Scholar 

  98. Greve, B., Magnusson, C. G., Melms, A., & Weissert, R. (2001). Immunoglobulin isotypes reveal a predominant role of type 1 immunity in multiple sclerosis. Journal of Neuroimmunology, 121(1–2), 120–125.

    PubMed  CAS  Google Scholar 

  99. Sousa, A. O., Henry, S., Maroja, F. M., Lee, F. K., Brum, L., Singh, M., Lagrange, P. H., & Aucouturier, P. (1998). IgG subclass distribution of antibody responses to protein and polysaccharide mycobacterial antigens in leprosy and tuberculosis patients. Clinical and Experimental Immunology, 111(1), 48–55.

    PubMed  CAS  Google Scholar 

  100. Lundgren, M., Persson, U., Larsson, P., Magnusson, C., Smith, C. I., Hammarstrom, L., & Severinson, E. (1989). Interleukin 4 induces synthesis of IgE and IgG4 in human B cells. European Journal of Immunology, 19(7), 1311–1315.

    PubMed  CAS  Google Scholar 

  101. Soejima, H., Irie, A., Miyamoto, S., Kajiwara, I., Kojima, S., Hokamaki, J., Sakamoto, T., Tanaka, T., Yoshimura, M., Nishimura, Y., et al. (2003). Preference toward a T-helper type 1 response in patients with coronary spastic angina. Circulation, 107(17), 2196–2200.

    PubMed  CAS  Google Scholar 

  102. Methe, H., Brunner, S., Wiegand, D., Nabauer, M., Koglin, J., & Edelman, E. R. (2005). Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes. Journal of the American College of Cardiology, 45(12), 1939–1945.

    PubMed  CAS  Google Scholar 

  103. Han, S. F., Liu, P., Zhang, W., Bu, L., Shen, M., Li, H., Fan, Y. H., Cheng, K., Cheng, H. X., Li, C. X., et al. (2007). The opposite-direction modulation of CD4 + CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clinical Immunology, 124(1), 90–97.

    PubMed  CAS  Google Scholar 

  104. Sherry, C. L., Kim, S. S., Dilger, R. N., Bauer, L. L., Moon, M. L., Tapping, R. I., Fahey, G. C., Jr., Tappenden, K. A., & Freund, G. G. (2010). Sickness behavior induced by endotoxin can be mitigated by the dietary soluble fiber, pectin, through up-regulation of IL-4 and Th2 polarization. Brain, Behavior, and Immunity, 24(4), 631–640.

    PubMed  CAS  Google Scholar 

  105. Viardot, A., Lord, R. V., & Samaras, K. (2010). The effects of weight loss and gastric banding on the innate and adaptive immune system in type 2 diabetes and prediabetes. Journal of Clinical Endocrinology and Metabolism, 95(6), 2845–2850.

    PubMed  CAS  Google Scholar 

  106. Kwak, B., Mulhaupt, F., Myit, S., & Mach, F. (2000). Statins as a newly recognized type of immunomodulator. Nature Medicine, 6(12), 1399–1402.

    PubMed  CAS  Google Scholar 

  107. Dunn, S. E., Youssef, S., Goldstein, M. J., Prod'homme, T., Weber, M. S., Zamvil, S. S., & Steinman, L. (2006). Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. The Journal of Experimental Medicine, 203(2), 401–412.

    PubMed  CAS  Google Scholar 

  108. Aprahamian, T., Bonegio, R., Rizzo, J., Perlman, H., Lefer, D. J., Rifkin, I. R., & Walsh, K. (2006). Simvastatin treatment ameliorates autoimmune disease associated with accelerated atherosclerosis in a murine lupus model. Journal of Immunology, 177(5), 3028–3034.

    CAS  Google Scholar 

  109. Youssef, S., Stuve, O., Patarroyo, J. C., Ruiz, P. J., Radosevich, J. L., Hur, E. M., Bravo, M., Mitchell, D. J., Sobel, R. A., Steinman, L., et al. (2002). The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature, 420(6911), 78–84.

    PubMed  CAS  Google Scholar 

  110. Hakamada-Taguchi, R., Uehara, Y., Kuribayashi, K., Numabe, A., Saito, K., Negoro, H., Fujita, T., Toyo-oka, T., & Kato, T. (2003). Inhibition of hydroxymethylglutaryl-coenzyme a reductase reduces Th1 development and promotes Th2 development. Circulation Research, 93(10), 948–956.

    PubMed  CAS  Google Scholar 

  111. Kinlay, S., Schwartz, G. G., Olsson, A. G., Rifai, N., Leslie, S. J., Sasiela, W. J., Szarek, M., Libby, P., & Ganz, P. (2003). High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation, 108(13), 1560–1566.

    PubMed  CAS  Google Scholar 

  112. Link, A., Ayadhi, T., Bohm, M., & Nickenig, G. (2006). Rapid immunomodulation by rosuvastatin in patients with acute coronary syndrome. European Heart Journal, 27(24), 2945–2955.

    PubMed  CAS  Google Scholar 

  113. Cheng, X., Ding, Y., Xia, C., Tang, T., Yu, X., Xie, J., Liao, M., Yao, R., Chen, Y., Wang, M., et al. (2009). Atorvastatin modulates Th1/Th2 response in patients with chronic heart failure. Journal of Cardiac Failure, 15(2), 158–162.

    PubMed  CAS  Google Scholar 

  114. Sallam, R., Bernstein, I., & Tracy, R. P. (2008). The cellular epidemiology of inflammation: the biochemical indices of T helper cells are stable phenotypes related to plasma markers of inflammation, adiposity, and hormonal status. EJBMB, 26(Supplement), 453–472.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Egyptian Journal of Biochemistry and Molecular Biology for permission to re-publish the data in Figs. 2, 3, and 4 and in Tables 1, 2, and 3 which originally appeared in [114]. This work was supported in part by the National Heart, Lung, and Blood Institute (NHLBI) training grant 5T32HL007594-27 (NCO), HL108371 (SAH), and R01 HL-46696 and R01 HL58329 (RPT).

Ethical standards

All experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nels C. Olson.

Additional information

Associate Editor Jennifer L. Hall oversaw the review of this article

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, N.C., Sallam, R., Doyle, M.F. et al. T Helper Cell Polarization in Healthy People: Implications for Cardiovascular Disease. J. of Cardiovasc. Trans. Res. 6, 772–786 (2013). https://doi.org/10.1007/s12265-013-9496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9496-6

Keywords

Navigation