Skip to main content

Advertisement

Log in

Micro-RNA: A Future Approach to Personalized Diagnosis of Bone Diseases

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoporosis is a highly prevalent bone disease worldwide and the most studied bone-associated pathological condition. Although its diagnosis makes use of advanced and clinically relevant imaging and biochemical tools, the information suffers from several limitations and has little or no prognostic value. In this context, circulating micro-RNAs represent a potentially attractive alternative or a useful addition to the diagnostic arsenal and offer a greater prognostic potential than the conventional approaches. These short non-coding RNA molecules act as inhibitors of gene expression by targeting messenger RNAs with different degrees of complementarity, establishing a complex multilevel network, the basis for the fine modulation of gene expression that finally regulates every single activity of a cell. Micro-RNAs may passively and/or actively be released in the circulation by source cells, and being measurable in biological fluids, their concentrations may be associated to specific pathophysiological conditions. Mounting, despite debatable, evidence supports the use of micro-RNAs as markers of bone cell metabolic activity and bone diseases. Indeed, several micro-RNAs have been associated with bone mineral density, fractures and osteoporosis. However, concerns such as absence of comparability between studies and, the lack of standardization and harmonization of the methods, limit their application. In this review, we describe the pathophysiological bases of the association between micro-RNAs and the deregulation of bone cells activity and the processes that led to the identification of potential micro-RNA-based markers associated with metabolic bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Li G, Thabane L, Papaioannou A, Ioannidis G, Levine MA, Adachi JD (2017) An overview of osteoporosis and frailty in the elderly. BMC Musculoskelet Disord 18:46

    Article  Google Scholar 

  2. Kulak CA, Dempster DW (2010) Bone histomorphometry: a concise review for endocrinologists and clinicians. Arq Bras Endocrinol Metab 54:87–98

    Article  Google Scholar 

  3. Lombardi G, Lanteri P, Colombini A, Banfi G (2012) Blood biochemical markers of bone turnover: pre-analytical and technical aspects of sample collection and handling. Clin Chem Lab Med 50:771–789

    Article  CAS  Google Scholar 

  4. Vasikaran SD, Chubb SA (2016) The use of biochemical markers of bone turnover in the clinical management of primary and secondary osteoporosis. Endocrine 52:222–225

    Article  CAS  Google Scholar 

  5. Dell’Aquila E, Armento G, Iuliani M, Simonetti S, D’Onofrio L, Zeppola T, Madaudo C, Russano M, Citarella F, Ribelli G, Pantano F, Vincenzi B, Tonini G, Santini D (2020) Denosumab for cancer-related bone loss. Exp Opin Biol Ther 20:1261–1274

    Article  CAS  Google Scholar 

  6. Kenkre JS, Bassett J (2018) The bone remodelling cycle. Ann Clin Biochem 55:308–327

    Article  CAS  Google Scholar 

  7. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int 2015:421746

    Article  Google Scholar 

  8. Delaisse JM, Andersen TL, Kristensen HB, Jensen PR, Andreasen CM, Soe K (2020) Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone 141:115628

    Article  CAS  Google Scholar 

  9. Ponzetti M, Rucci N (2021) Osteoblast differentiation and signaling: established concepts and emerging topics. Int J Mol Sci 22:6651

    Article  CAS  Google Scholar 

  10. Rosset EM, Bradshaw AD (2016) SPARC/osteonectin in mineralized tissue. Matrix Biol 52–54:78–87

    Article  Google Scholar 

  11. Alford AI, Kozloff KM, Hankenson KD (2015) Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol 65:20–31

    Article  CAS  Google Scholar 

  12. Yavropoulou MP, Yovos JG (2008) Osteoclastogenesis–current knowledge and future perspectives. J Musculoskelet Neuronal Interact 8:204–216

    CAS  Google Scholar 

  13. Menaa C, Kurihara N, Roodman GD (2000) CFU-GM-derived cells form osteoclasts at a very high efficiency. Biochem Biophys Res Commun 267:943–946

    Article  CAS  Google Scholar 

  14. Pradhan AK, Emdad L, Das SK, Sarkar D, Fisher PB (2017) The enigma of miRNA regulation in cancer. Adv Cancer Res 135:25–52

    Article  CAS  Google Scholar 

  15. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nature Rev Mol Cell Biol 15:509–524

    Article  CAS  Google Scholar 

  16. Nunez Lopez YO, Pittas AG, Pratley RE, Seyhan AA (2017) Circulating levels of miR-7, miR-152 and miR-192 respond to vitamin D supplementation in adults with prediabetes and correlate with improvements in glycemic control. J Nutr Biochem 49:117–122

    Article  CAS  Google Scholar 

  17. D’Angelo E, Fassan M, Maretto I, Pucciarelli S, Zanon C, Digito M, Rugge M, Nitti D, Agostini M (2016) Serum miR-125b is a non-invasive predictive biomarker of the pre-operative chemoradiotherapy responsiveness in patients with rectal adenocarcinoma. Oncotarget 7:28647–28657

    Article  Google Scholar 

  18. Rashed RA, Hassan NM, Hussein MM (2020) MicroRNA-92a as a marker of treatment response and survival in adult acute myeloid leukemia patients. Leuk Lymphoma 61:2475–2481

    Article  CAS  Google Scholar 

  19. Letarouilly JG, Broux O, Clabaut A (2019) New insights into the epigenetics of osteoporosis. Genomics 111:793–798

    Article  CAS  Google Scholar 

  20. Bottani M, Banfi G, Lombardi G (2019) Perspectives on miRNAs as epigenetic markers in osteoporosis and bone fracture risk: a step forward in personalized diagnosis. Front Genetics 10:1044

    Article  CAS  Google Scholar 

  21. Kobayashi Y, Uehara S, Udagawa N, Takahashi N (2016) Regulation of bone metabolism by Wnt signals. J Biochem 159:387–392

    Article  CAS  Google Scholar 

  22. Zhang F, Cao K, Du G, Zhang Q, Yin Z (2019) miR-29a promotes osteoblast proliferation by downregulating DKK-1 expression and activating Wnt/beta-catenin signaling pathway. Adv Clin Exp Med 28:1293–1300

    Article  Google Scholar 

  23. Zhang JF, Fu WM, He ML, Xie WD, Lv Q, Wan G, Li G, Wang H, Lu G, Hu X, Jiang S, Li JN, Lin MC, Zhang YO, Kung HF (2011) MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol 8:829–838

    Article  CAS  Google Scholar 

  24. Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 105:13906–13911

    Article  CAS  Google Scholar 

  25. Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 119:3666–3677

    Article  CAS  Google Scholar 

  26. Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH (2011) A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 286:12328–12339

    Article  CAS  Google Scholar 

  27. Vimalraj S, Partridge NC, Selvamurugan N (2014) A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol 229:1236–1244z

    Article  CAS  Google Scholar 

  28. Qu B, Xia X, Wu HH, Tu CQ, Pan XM (2014) PDGF-regulated miRNA-138 inhibits the osteogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 448:241–247

    Article  CAS  Google Scholar 

  29. Liu H, Sun Q, Wan C, Li L, Zhang L, Chen Z (2014) MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting Runx2 and Fgfr2. J Cell Physiol 229:1494–1502

    Article  CAS  Google Scholar 

  30. Lin C, Yu S, Jin R, Xiao Y, Pan M, Pei F, Zhu X, Huang H, Zhang Z, Chen S, Liu H, Chen Z (2019) Circulating miR-338 cluster activities on osteoblast differentiation: potential diagnostic and therapeutic targets for postmenopausal osteoporosis. Theranostics 9:3780–3797

    Article  CAS  Google Scholar 

  31. Zhang JF, Fu WM, He ML, Wang H, Wang WM, Yu SC, Bian XW, Zhou J, Lin MC, Lu G, Poon WS, Kung HF (2011) MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 22:3955–3961

    Article  CAS  Google Scholar 

  32. Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 108:6139–6144

    Article  Google Scholar 

  33. Guo L, Xu J, Qi J, Zhang L, Wang J, Liang J, Qian N, Zhou H, Wei L, Deng L (2013) MicroRNA-17-92a upregulation by estrogen leads to Bim targeting and inhibition of osteoblast apoptosis. J Cell Sci 126:978–988

    CAS  Google Scholar 

  34. Li H, Li T, Fan J, Li T, Fan L, Wang S, Weng X, Han Q, Zhao RC (2015) miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differentiat 22:1935–1945

    Article  CAS  Google Scholar 

  35. Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284:4667–4678

    Article  CAS  Google Scholar 

  36. Sugatani T, Vacher J, Hruska KA (2011) A microRNA expression signature of osteoclastogenesis. Blood 117:3648–3657

    Article  CAS  Google Scholar 

  37. Feng YH, Tsao CJ (2016) Emerging role of microRNA-21 in cancer. Biomed Rep 5:395–402

    Article  CAS  Google Scholar 

  38. Inoue K, Ng C, Xia Y, Zhao B (2021) Regulation of osteoclastogenesis and bone resorption by miRNAs. Front Cell Development Biol 9:651161

    Article  Google Scholar 

  39. Hu CH, Sui BD, Du FY, Shuai Y, Zheng CX, Zhao P, Yu XR, Jin Y (2017) miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep 7:43191

    Article  Google Scholar 

  40. Zhao Q, Liu C, Xie Y, Tang M, Luo G, Chen X, Tian L, Yu X (2020) Lung cancer cells derived circulating miR-21 promotes differentiation of monocytes into osteoclasts. OncoTargets Ther 13:2643–2656

    Article  CAS  Google Scholar 

  41. Sugatani T, Hruska KA (2013) Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem 114:1217–1222

    Article  CAS  Google Scholar 

  42. Mizoguchi F, Murakami Y, Saito T, Miyasaka N, Kohsaka H (2013) miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther 15:R102

    Article  Google Scholar 

  43. Dou C, Zhang C, Kang F, Yang X, Jiang H, Bai Y, Xiang J, Xu J, Dong S (2014) MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta 1839:1084–1096

    Article  CAS  Google Scholar 

  44. Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, Kim HH (2013) MicroRNA-124 regulates osteoclast differentiation. Bone 56:383–389

    Article  CAS  Google Scholar 

  45. Tang L, Yin Y, Liu J, Li Z, Lu X (2017) MiR-124 attenuates osteoclastogenic differentiation of bone marrow monocytes via targeting Rab27a. Cell Physiol Biochem 43:1663–1672

    Article  CAS  Google Scholar 

  46. Yang S, Zhang W, Cai M, Zhang Y, Jin F, Yan S, Baloch Z, Fang Z, Xue S, Tang R, Xiao J, Huang Q, Sun Y, Wang X (2018) Suppression of bone resorption by miR-141 in aged rhesus monkeys. J Bone Mineral Res 33:1799–1812

    Article  CAS  Google Scholar 

  47. Chen C, Cheng P, Xie H, Zhou HD, Wu XP, Liao EY, Luo XH (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Mineral Res 29:338–347

    Article  CAS  Google Scholar 

  48. Anastasilakis AD, Yavropoulou MP, Makras P, Sakellariou GT, Papadopoulou F, Gerou S, Papapoulos SE (2017) Increased osteoclastogenesis in patients with vertebral fractures following discontinuation of denosumab treatment. Eur J Endcorinol 176:677–683

    Article  CAS  Google Scholar 

  49. Minamizaki T, Nakao Y, Irie Y, Ahmed F, Itoh S, Sarmin N, Yoshioka H, Nobukiyo A, Fujimoto C, Niida S, Sotomaru Y, Tanimoto K, Kozai K, Sugiyama T, Bonnelye E, Takei Y, Yoshiko Y (2020) The matrix vesicle cargo miR-125b accumulates in the bone matrix, inhibiting bone resorption in mice. Communicat Biol 3:30

    CAS  Google Scholar 

  50. Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y (2015) miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 12:343–353

    Article  Google Scholar 

  51. Li D, Liu J, Guo B, Liang C, Dang L, Lu C, He X, Cheung HY, Xu L, Lu C, He B, Liu B, Shaikh AB, Li F, Wang L, Yang Z, Au DW, Peng S, Zhang Z, Zhang BT, Pan X, Qian A, Shang P, Xiao L, Jiang B, Wong CK, Xu J, Bian Z, Liang Z, Guo DA, Zhu H, Tan W, Lu A, Zhang G (2016) Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nature Communicat 7:10872

    Article  CAS  Google Scholar 

  52. Hackl M, Heilmeier U, Weilner S, Grillari J (2016) Circulating microRNAs as novel biomarkers for bone diseases—complex signatures for multifactorial diseases? Mol Cell Endocrinol 432:83–95

    Article  CAS  Google Scholar 

  53. Li H, Wang Z, Fu Q, Zhang J (2014) Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers 19:553–556

    Article  CAS  Google Scholar 

  54. Meng J, Zhang D, Pan N, Sun N, Wang Q, Fan J, Zhou P, Zhu W, Jiang L (2015) Identification of miR-194–5p as a potential biomarker for postmenopausal osteoporosis. Peer J 3:e971

    Article  Google Scholar 

  55. Bedene A, Mencej Bedrac S, Jese L, Marc J, Vrtacnik P, Prezelj J, Kocjan T, Kranjc T, Ostanek B (2016) MiR-148a the epigenetic regulator of bone homeostasis is increased in plasma of osteoporotic postmenopausal women. Wien Klin Wochenschr 128:519–526

    Article  CAS  Google Scholar 

  56. Chen J, Li K, Pang Q, Yang C, Zhang H, Wu F, Cao H, Liu H, Wan Y, Xia W, Wang J, Dai Z, Li Y (2016) Identification of suitable reference gene and biomarkers of serum miRNAs for osteoporosis. Sci Rep 6:36347

    Article  CAS  Google Scholar 

  57. Chen Z, Bemben MG, Bemben DA (2019) Bone and muscle specific circulating microRNAs in postmenopausal women based on osteoporosis and sarcopenia status. Bone 120:271–278

    Article  CAS  Google Scholar 

  58. Ramirez-Salazar EG, Carrillo-Patino S, Hidalgo-Bravo A, Rivera-Paredez B, Quiterio M, Ramirez-Palacios P, Patino N, Valdes-Flores M, Salmeron J, Velazquez-Cruz R (2018) Serum miRNAs miR-140-3p and miR-23b-3p as potential biomarkers for osteoporosis and osteoporotic fracture in postmenopausal Mexican-Mestizo women. Gene 679:19–27

    Article  CAS  Google Scholar 

  59. Ismail SM, El Boghdady NA, Hamoud HS, Shabayek MI (2020) Evaluation of circulating miRNA-208a-3p, miRNA-155–5p and miRNA-637 as potential non-invasive biomarkers and the possible mechanistic insights into pre- and postmenopausal osteoporotic females. Archiv Biochem Biophys 684:108331

    Article  CAS  Google Scholar 

  60. Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Mineral Res 29:1718–1728

    Article  CAS  Google Scholar 

  61. Mandourah AY, Ranganath L, Barraclough R, Vinjamuri S, Hof RV, Hamill S, Czanner G, Dera AA, Wang D, Barraclough DL (2018) Circulating microRNAs as potential diagnostic biomarkers for osteoporosis. Sci Rep 8:8421

    Article  Google Scholar 

  62. Camacho PM, Petak SM, Binkley N, Clarke BL, Harris ST, Hurley DL, Kleerekoper M, Lewiecki EM, Miller PD, Narula HS, Pessah-Pollack R, Tangpricha V, Wimalawansa SJ, Watts NB (2016) American association of clinical endocrinologists and American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2016–executive summary. Endocrine Pract 22:1111–1118

    Article  Google Scholar 

  63. Anastasilakis AD, Makras P, Pikilidou M, Tournis S, Makris K, Bisbinas I, Tsave O, Yovos JG, Yavropoulou MP (2018) Changes of circulating MicroRNAs in response to treatment with teriparatide or denosumab in postmenopausal osteoporosis. J Clin Endocrinol Metab 103:1206–1213

    Article  Google Scholar 

  64. Yavropoulou MP, Anastasilakis AD, Makras P, Papatheodorou A, Rauner M, Hofbauer LC, Tsourdi E (2020) Serum profile of microRNAs linked to bone metabolism during sequential treatment for postmenopausal osteoporosis. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa368

    Article  Google Scholar 

  65. Qu Y, Wang Z, Zhou H, Kang M, Dong R, Zhao J (2017) Oligosaccharide nanomedicine of alginate sodium improves therapeutic results of posterior lumbar interbody fusion with cages for degenerative lumbar disease in osteoporosis patients by downregulating serum miR-155. Int J Nanomed 12:8459–8469

    Article  CAS  Google Scholar 

  66. Aghamohammadi D, Dolatkhah N, Shakouri SK, Hermann P, Eslamian F (2020) Ginger (Zingiber officinale) and turmeric (Curcuma longa L.) supplementation effects on quality of life, body composition, bone mineral density and osteoporosis related biomarkers and micro-RNAs in women with postmenopausal osteoporosis: a study protocol for a randomized controlled clinical trial. J Complement Integr Med 18:131–137

    Article  Google Scholar 

  67. Polyzos SA, Anastasilakis AD, Efstathiadou ZA, Yavropoulou MP, Makras P (2021) Postmenopausal osteoporosis coexisting with other metabolic diseases: treatment considerations. Maturitas 147:19–25

    Article  CAS  Google Scholar 

  68. Heilmeier U, Hackl M, Skalicky S, Weilner S, Schroeder F, Vierlinger K, Patsch JM, Baum T, Oberbauer E, Lobach I, Burghardt AJ, Schwartz AV, Grillari J, Link TM (2016) Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. J Bone Mineral Res 31:2173–2192

    Article  CAS  Google Scholar 

  69. Verdelli C, Sansoni V, Perego S, Favero V, Vitale J, Terrasi A, Morotti A, Passeri E, Lombardi G, Corbetta S (2020) Circulating fractures-related microRNAs distinguish primary hyperparathyroidism-related from estrogen withdrawal-related osteoporosis in postmenopausal osteoporotic women: a pilot study. Bone 137:115350

    Article  CAS  Google Scholar 

  70. Willson T, Nelson SD, Newbold J, Nelson RE, LaFleur J (2015) The clinical epidemiology of male osteoporosis: a review of the recent literature. Clin Epidemiol 7:65–76

    Google Scholar 

  71. Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R, Plachel F, Feichtinger X, Heimel P, Fahrleitner-Pammer A, Grillari J, Redl H, Resch H, Hackl M (2016) Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab 101:4125–4134

    Article  CAS  Google Scholar 

  72. Feichtinger X, Muschitz C, Heimel P, Baierl A, Fahrleitner-Pammer A, Redl H, Resch H, Geiger E, Skalicky S, Dormann R, Plachel F, Pietschmann P, Grillari J, Hackl M, Kocijan R (2018) Bone-related circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their association to bone microstructure and histomorphometry. Sci Rep 8:4867

    Article  Google Scholar 

  73. Sun M, Hu L, Wang S, Huang T, Zhang M, Yang M, Zhen W, Yang D, Lu W, Guan M, Peng S (2020) Circulating MicroRNA-19b identified from osteoporotic vertebral compression fracture patients increases bone formation. J Bone Mineral Res 35:306–316

    Article  CAS  Google Scholar 

  74. Kelch S, Balmayor ER, Seeliger C, Vester H, Kirschke JS, van Griensven M (2017) miRNAs in bone tissue correlate to bone mineral density and circulating miRNAs are gender independent in osteoporotic patients. Sci Rep 7:15861

    Article  Google Scholar 

  75. Panach L, Mifsut D, Tarin JJ, Cano A, Garcia-Perez MA (2015) Serum circulating MicroRNAs as biomarkers of osteoporotic fracture. Calcif Tissue Int 97:495–505

    Article  CAS  Google Scholar 

  76. Weilner S, Skalicky S, Salzer B, Keider V, Wagner M, Hildner F, Gabriel C, Dovjak P, Pietschmann P, Grillari-Voglauer R, Grillari J, Hackl M (2015) Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 79:43–51

    Article  CAS  Google Scholar 

  77. Chen H, Jiang H, Can D, Xu H, Zhang K, Guo S (2017) Evaluation of MicroRNA 125b as a potential biomarker for postmenopausal osteoporosis. Trop J Pharm Res 16:641–647

    Article  CAS  Google Scholar 

  78. Yavropoulou MP, Anastasilakis AD, Makras P, Tsalikakis DG, Grammatiki M, Yovos JG (2017) Expression of microRNAs that regulate bone turnover in the serum of postmenopausal women with low bone mass and vertebral fractures. Eur J Endocrinol 176:169–176

    Article  CAS  Google Scholar 

  79. Wang C, He H, Wang L, Jiang Y, Xu Y (2018) Reduced miR-144-3p expression in serum and bone mediates osteoporosis pathogenesis by targeting RANK. Biochem Cell Biol 96:627–635

    Article  CAS  Google Scholar 

  80. Zarecki P, Hackl M, Grillari J, Debono M, Eastell R (2020) Serum microRNAs as novel biomarkers for osteoporotic vertebral fractures. Bone 130:115105

    Article  CAS  Google Scholar 

  81. Feurer E, Kan C, Croset M, Sornay-Rendu E, Chapurlat R (2019) Lack of Association between select circulating miRNAs and bone mass, turnover, and fractures: data from the OFELY cohort. J Bone Mineral Res 34:1074–1085

    Article  CAS  Google Scholar 

  82. Ladang A, Beaudart C, Locquet M, Reginster JY, Bruyere O, Cavalier E (2020) Evaluation of a panel of MicroRNAs that predicts fragility fracture risk: a pilot study. Calcif Tissue Int 106:239–247

    Article  CAS  Google Scholar 

  83. Kerschan-Schindl K, Hackl M, Boschitsch E, Föger-Samwald U, Nägele O, Skalicky S, Weigl M, Grillari J, Pietschmann P (2021) Diagnostic performance of a panel of miRNAs (OsteomiR) for osteoporosis in a cohort of postmenopausal women. Calcif Tissue Int 108:725–737

    Article  CAS  Google Scholar 

  84. Morrow DA, de Lemos JA (2007) Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 115:949–952

    Article  Google Scholar 

  85. Lippi G, Banfi G, Maffulli N (2010) Preanalytical variability: the dark side of the moon in blood doping screening. Eur J Appl Physiol 109:1003–1005

    Article  Google Scholar 

  86. Shende VR, Goldrick MM, Ramani S, Earnest DJ (2011) Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS ONE 6:e22586

    Article  CAS  Google Scholar 

  87. Witwer KW (2012) XenomiRs and miRNA homeostasis in health and disease: evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol 9:1147–1154

    Article  CAS  Google Scholar 

  88. Faraldi M, Gomarasca M, Sansoni V, Perego S, Banfi G, Lombardi G (2019) Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci Rep 9:1584

    Article  Google Scholar 

  89. Lombardi G, Perego S, Sansoni V, Banfi G (2016) Circulating miRNA as fine regulators of the physiological responses to physical activity: pre-analytical warnings for a novel class of biomarkers. Clin Biochem 49:1331–1339

    Article  CAS  Google Scholar 

  90. Faraldi M, Gerosa L, Gomarasca M, Sansoni V, Perego S, Ziemann E, Banfi G, Lombardi G (2021) A Physically active status affects the circulating profile of cancer-associated miRNAs. Diagnostics 11(5):820

    Article  CAS  Google Scholar 

  91. Takahashi K, Yokota S, Tatsumi N, Fukami T, Yokoi T, Nakajima M (2013) Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol Appl Pharmacol 272:154–160

    Article  CAS  Google Scholar 

  92. Neal CS, Michael MZ, Pimlott LK, Yong TY, Li JY, Gleadle JM (2011) Circulating microRNA expression is reduced in chronic kidney disease. Nephrol Dialysis Transplant 26:3794–3802

    Article  CAS  Google Scholar 

  93. Bottani M, Banfi G, Lombardi G (2020) The clinical potential of circulating miRNAs as biomarkers: present and future applications for diagnosis and prognosis of age-associated bone diseases. Biomolecules 10(4):589

    Article  CAS  Google Scholar 

  94. Faraldi M, Sansoni V, Perego S, Gomarasca M, Kortas J, Ziemann E, Banfi G, Lombardi G (2020) Study of the preanalytical variables affecting the measurement of clinically relevant free-circulating microRNAs: focus on sample matrix, platelet depletion, and storage conditions. Biochem Med 30:010703

    Article  Google Scholar 

  95. Faraldi M, Gomarasca M, Perego S, Sansoni V, Banfi G, Lombardi G (2020) Effect of collection matrix, platelet depletion, and storage conditions on plasma extracellular vesicles and extracellular vesicle-associated miRNAs measurements. Clin Chem Lab Med 59(5):893–903

    Article  Google Scholar 

  96. Materozzi M, Merlotti D, Gennari L, Bianciardi S (2018) The potential role of miRNAs as new biomarkers for osteoporosis. Int J Endocrinol 2018:2342860

    Article  Google Scholar 

Download references

Acknowledgements

The authors are members of the “Committee on Bone Metabolism (C-BM)” of the International Federation of Clinical Chemistry (IFCC). GL is member of the Italian Society of Clinical Biochemistry and Clinical Molecular Biology (SIBioC), chairmen of the “Working Group on Clinical Biochemistry and Metabolism of Bone and Skeletal Muscle Tissues”. ED is member of Canadian Society of Clinical Chemists (CSCC). The authors are grateful to Professor Etienne Cavalier, chairmen of IFCC C-BM, for his valuable comments to the manuscript.

Funding

This review has been funded by the Italian Ministry of Health (“Ricerca Corrente” research program), the Polish National Science Centre (NCN Grant No. 2018/29/B/NZ7/02094).

Author information

Authors and Affiliations

Authors

Contributions

GL and ED—Conceptualized the article, performed the literature search and data analysis, and drafted and critically revised the manuscript.

Corresponding author

Correspondence to Giovanni Lombardi.

Ethics declarations

Conflict of interest

Giovanni Lombardi and Edgard Delvin declare that they have no conflict of interest to disclose.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombardi, G., Delvin, E. Micro-RNA: A Future Approach to Personalized Diagnosis of Bone Diseases. Calcif Tissue Int 112, 271–287 (2023). https://doi.org/10.1007/s00223-022-00959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-00959-z

Keywords

Navigation