Skip to main content
Log in

Evaluation of a Panel of MicroRNAs that Predicts Fragility Fracture Risk: A Pilot Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The assessment of fragility fracture risk based on bone densitometry and FRAX°, although commonly used, has shown some limitations. MicroRNAs (miRNAs) are promising biomarkers known to regulate post-transcriptional gene expression. Many studies have already shown that microRNAs are involved in bone homeostasis by modulating osteoblast and osteoclast gene expression. In this pilot study, we investigated the ability of an miRNA panel (namely, the OsteomiR° score) to predict fragility fracture risk in older people. miRNAs were extracted from the sera of 17 persons who developed a fracture within 3 years of collecting the serum and 16 persons who did not experience fractures in the same period. Nineteen miRNAs known to be involved in bone homeostasis were assessed, and 10 miRNAs were employed to calculate the OsteomiR° score. We found a trend towards higher OsteomiR° scores in individuals who experienced fractures compared to control subjects. The most suitable cut-off that maximized sensitivity and specificity was determined by ROC curve analysis, and a positive predictive value of 68% and a sensitivity of 76% were obtained. The OsteomiR° score was higher in osteopenic and osteoporotic subjects compared to subjects with a normal T score. Additionally, the OsteomiR° score predicted more fracture events than the recommended “need-to-treat” thresholds based on FRAX° 10-year probability. miRNAs reflect impairments in bone homeostasis several years before the occurrence of a fracture. The OsteomiR° score seems to be a promising miRNA panel for fragility fracture risk prediction and might have added value compared to FRAX°. Given the limited cohort size, further studies should be dedicated to validating the OsteomiR° score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38(2):4–9

    Article  Google Scholar 

  2. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475

    Article  PubMed  Google Scholar 

  3. Randell AG, Nguyen TV, Bhalerao N, Silverman SL, Sambrook PN, Eisman JA (2000) Deterioration in quality of life following hip fracture: a prospective study. Osteoporos Int 11(5):460–466

    Article  CAS  PubMed  Google Scholar 

  4. Melton LJ, Johnell O, Lau E, Mautalen CA, Seeman E (2004) Osteoporosis and the global competition for health care resources. J Bone Miner Res 19(7):1055–1058

    Article  PubMed  Google Scholar 

  5. Reid IR (2015) Efficacy, effectiveness and side effects of medications used to prevent fractures. J Intern Med 277(6):690–706

    Article  CAS  PubMed  Google Scholar 

  6. Camacho PM et al (2016) American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the diagnosis and treatment of postmenopausal osteoporosis-executive summary. Endocr Pract 22(4):1–42

    Article  PubMed  Google Scholar 

  7. Johnell O et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194

    Article  PubMed  Google Scholar 

  8. Siris ES et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. J Am Med Assoc 286(22):2815–2822

    Article  CAS  Google Scholar 

  9. Kanis JA et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046

    Article  CAS  PubMed  Google Scholar 

  10. Silverman SL, Calderon AD (2010) The utility and limitations of FRAX: a us perspective. Curr Osteoporos Rep 8(4):192–197

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sambrook PN et al (2007) Influence of fall related factors and bone strength on fracture risk in the frail elderly. Osteoporos Int 18(5):603–610

    Article  CAS  PubMed  Google Scholar 

  12. Giangregorio LM et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27(2):301–308

    Article  PubMed  Google Scholar 

  13. Schwartz AV et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305(21):2184–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walter E, Dellago H, Grillari J, Dimai HP, Hackl M (2018) Cost-utility analysis of fracture risk assessment using microRNAs compared with standard tools and no monitoring in the Austrian female population. Bone 108:44–54

    Article  CAS  PubMed  Google Scholar 

  15. Hackl M, Heilmeier U, Weilner S, Grillari J (2016) Circulating microRNAs as novel biomarkers for bone diseases—complex signatures for multifactorial diseases? Mol Cell Endocrinol 432:83–95

    Article  CAS  PubMed  Google Scholar 

  16. Foessl I, Kotzbeck P, Obermayer-Pietsch B (2019) miRNAs as novel biomarkers for bone related diseases. J Lab Precis Med 4(2–2):2–2

    Article  Google Scholar 

  17. Tie Y, Liu B, Fu H, Zheng X (2009) Circulating miRNA and cancer diagnosis. Sci China Ser C Life Sci 52(12):1117–1122

    Article  CAS  Google Scholar 

  18. Meder B et al (2011) MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106(1):13–23

    Article  CAS  PubMed  Google Scholar 

  19. McClelland AD, Kantharidis P (2013) microRNA in the development of diabetic complications. Clin Sci 126(2):95–110

    Article  CAS  Google Scholar 

  20. He P et al (2016) miR-141 modulates osteoblastic cell proliferation by regulating the target gene of IncRNA H19 and IncRNA H19-derived miR-675. Am J Transl Res 8(4):1780–1788

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li D et al (2016) Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun 7(1):10872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao C et al (2015) miR-214 promotes osteoclastogenesis by targeting pten/pi3k/Akt pathway. RNA Biol 12(3):343–353

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cao F, Zhan J, Chen X, Zhang K, Lai R, Feng Z (2017) miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β-catenin signaling. Mol Med Rep 16(6):9301–9308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tu B et al (2016) miR-203 inhibits the traumatic heterotopic ossification by targeting Runx2. Cell Death Dis 7(10):e2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin Q, Wang J, Fu Q, Gu S, Rui Y (2018) CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteoporosis. J Cell Mol Med 22(12):6112–6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng H, Lu SL, Bai Y, Fang X, Huang H, Zhuang XQ (2018) MiR-133a inhibits fracture healing via targeting RUNX2/BMP2. Eur Rev Med Pharmacol Sci 22(9):2519–2526

    CAS  PubMed  Google Scholar 

  27. Deng Y et al (2013) Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev 22(16):2278–2286

    Article  CAS  PubMed  Google Scholar 

  28. Zhang L et al (2017) Overexpression of MiR-335-5p promotes bone formation and regeneration in mice. J Bone Miner Res 32(12):2466–2475

    Article  CAS  PubMed  Google Scholar 

  29. Huang J, Song G, Yin Z, Fu Z, Ye Z (2017) MiR-29a and messenger RNA expression of bone turnover markers in canonical Wnt pathway in patients with ankylosing spondylitis. Clin Lab 63(5–6):955–960

    CAS  PubMed  Google Scholar 

  30. Mäkitie RE, Hackl M, Niinimäki R, Kakko S, Grillari J, Mäkitie O (2018) Altered MicroRNA profile in osteoporosis caused by impaired WNT signaling. J. Clin. Endocrinol. Metab. 103(5):1985–1996

    Article  PubMed  Google Scholar 

  31. Cao Z et al (2014) MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS ONE 9(5):e97098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Seeliger C et al (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29(8):1718–1728

    Article  CAS  PubMed  Google Scholar 

  33. Kocijan R et al (2016) Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab 101(11):4125–4134

    Article  CAS  PubMed  Google Scholar 

  34. Feichtinger X et al (2018) Bone-related circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their Association to Bone Microstructure and Histomorphometry. Sci Rep 8(1):4867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Heilmeier U et al (2016) Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. J Bone Miner Res 31(12):2173–2192

    Article  CAS  PubMed  Google Scholar 

  36. Beaudart C et al (2015) Quality of life and physical components linked to sarcopenia: the SarcoPhAge study. Exp Gerontol 69:103–110

    Article  CAS  PubMed  Google Scholar 

  37. Norlund L et al (1997) Reference intervals for the glomerular filtration rate and cell-proliferation markers: serum cystatin C and serum β2-microglobulin/cystatin C-ratio. Scand J Clin Lab Investig 57(6):463–470

    Article  CAS  Google Scholar 

  38. Johansson H et al (2011) A FRAX® model for the assessment of fracture probability in Belgium. Osteoporos Int 22(2):453–461

    Article  CAS  PubMed  Google Scholar 

  39. Briot K et al (2012) Actualisation 2012 des recommandations françaises du traitement médicamenteux de l’ostéoporose post-ménopausique. Revue du rhumatisme. 79(3):264–274

    Article  Google Scholar 

  40. Chen Y, Alman BA (2009) Wnt pathway, an essential role in bone regeneration. J Cell Biochem 106(3):353–362

    Article  CAS  PubMed  Google Scholar 

  41. Kanis JA, Oden A, Johansson H, McCloskey E (2012) Pitfalls in the external validation of FRAX. Osteoporos Int 23(2):423–431

    Article  CAS  PubMed  Google Scholar 

  42. Aubry-Rozier B, Stoll D, Krieg MA, Lamy O, Hans D (2013) What was your fracture risk evaluated by FRAX® the day before your osteoporotic fracture? Clin Rheumatol 32(2):219–223

    Article  PubMed  Google Scholar 

  43. Chen XF, Li XL, Zhang H, Liu GJ (2014) Were you identified to be at high fracture risk by FRAX® before your osteoporotic fracture occurred? Clin Rheumatol 33(5):693–698

    Article  PubMed  Google Scholar 

  44. Watts NB, Ettinger B, LeBoff MS (2009) FRAX facts. J Bone Miner Res 24(6):975–979

    Article  PubMed  Google Scholar 

  45. Poynard T et al (2011) Applicability and precautions of use of liver injury biomarker FibroTest A reappraisal at 7 years of age. BMC Gastroenterol 11(39):39

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to Matthias Hackl, Susanna Skalicky and the TamiRNA GbmH team for providing technical support for the experiments.

Funding

This study was supported by clinical chemistry department and Fondation Léon Fredericq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Ladang.

Ethics declarations

Conflict of interest

JYR is a member of paid advisory boards for IBSA-GENEVRIER, MYLAN, RADIUS HEALTH, PIERRE FABRE; upon invitation, is a paid lecturer of sponsor for IBSA-GENEVRIER, MYLAN, CNIEL, DAIRY RESEARCH COUNCIL (DRC) and received grant support from industry (all through the Institution) from IBSA-GENEVRIER, MYLAN, CNIEL, RADIUS HEALTH. All other authors state that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladang, A., Beaudart, C., Locquet, M. et al. Evaluation of a Panel of MicroRNAs that Predicts Fragility Fracture Risk: A Pilot Study. Calcif Tissue Int 106, 239–247 (2020). https://doi.org/10.1007/s00223-019-00628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00628-8

Keywords

Navigation