Skip to main content

Advertisement

Log in

Attenuation of Antiresorptive Action in Withdrawal of Minodronic Acid for Three Months After Treatment for Twelve Months in Ovariectomized Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the effects of withdrawal of minodronic acid (MIN) for 3 months after 12 months of treatment in ovariectomized (OVX) rat. OVX rats were orally treated with MIN (6, 30, and 150 µg/kg/day) for 12 months and necropsied on the day after the last dosing or following 3 months of withdrawal. Lumbar and femoral BMD were decreased in OVX controls. MIN dose-dependently increased BMD. Withdrawal eliminated the effect of MIN on BMD loss after treatment at 6 µg/kg, but not after treatment at 30 and 150 µg/kg. In MIN-treated rats, trabecular thinning occurred during withdrawal after treatment at 6 µg/kg, but the trabecular microstructure was maintained at 30 and 150 µg/kg. In a mechanical test of the femoral diaphysis, stiffness of in OVX controls was decreased but ultimate load was similar to that in sham after withdrawal. MIN increased ultimate load and stiffness, but endosteal length decreased after withdrawal. Suppression of bone turnover by MIN based on bone turnover markers and histomorphometric indices was attenuated by withdrawal after treatment at 6 and 30 µg/kg and partially at 150 µg/kg. The MIN concentration in the humerus decreased during withdrawal, and half-life at 30 µg/kg was shorter than that at 150 µg/kg. These results show that the antiresorptive action of MIN was dose-dependently attenuated by 3-month withdrawal in a rat OVX model. An absence of BMD increase was only observed at a low dose but decreases in antiresorptive activity occurred over a wide dose range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Fracture Intervention Trial Research Group Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348:1535–1541

    Article  CAS  PubMed  Google Scholar 

  2. Reginster J, Minne HW, Sorensen OH, Hooper M, Roux C, Brandi ML, Lund B, Ethgen D, Pack S, Roumagnac I, Eastell R. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group (2000) Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Osteoporos Int 11:83–91

    Article  Google Scholar 

  3. Delmas PD, Recker RR, Chesnut CH 3rd, Skag A, Stakkestad JA, Emkey R, Gilbride J, Schimmer RC, Christiansen C (2004) Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: results from the BONE study. Osteoporos Int 15:792–798

    Article  CAS  PubMed  Google Scholar 

  4. Black DM, Kelly MP, Genant HK, Palermo L, Eastell R, Bucci-Rechtweg C, Cauley J, Leung PC, Boonen S, Santora A, de Papp A, Bauer DC, Fracture Intervention Trial Steering; Committee; HORIZON Pivotal Fracture Trial Steering Committee (2010) Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur. N Engl J Med 362:1761–1771

    Article  CAS  PubMed  Google Scholar 

  5. Matsumoto T, Hagino H, Shiraki M, Fukunaga M, Nakano T, Takaoka K, Morii H, Ohashi Y, Nakamura T (2009) Effect of daily oral minodronate on vertebral fractures in Japanese postmenopausal women with established osteoporosis: a randomized placebo-controlled double-blind study. Osteoporos Int 20:1429–1437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J (2011) Biochemical and molecular mechanisms of action of bisphosphonates. Bone 49:34–41

    Article  CAS  PubMed  Google Scholar 

  7. Fleisch H (2000) Bisphosphonates in bone disease from the laboratory to the patient. Academic Press, San Diego

    Google Scholar 

  8. Ohno K, Mori K, Orita M, Takeuchi M (2011) Computational insights into binding of bisphosphates to farnesyl pyrophosphate synthase. Curr Med Chem 18:220–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hagino H, Shiraki M, Fukunaga M, Nakano T, Takaoka K, Ohashi Y, Nakamura T, Matsumoto T (2012) Three years of treatment with minodronate in patients with postmenopausal osteoporosis. J Bone Miner Metab 30:439–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hagino H, Nishizawa Y, Sone T, Morii H, Taketani Y, Nakamura T, Itabashi A, Mizunuma H, Ohashi Y, Shiraki M, Minamide T, Matsumoto T (2009) A double-blinded head-to-head trial of minodronate and alendronate in women with postmenopausal osteoporosis. Bone 44:1078–1084

    Article  CAS  PubMed  Google Scholar 

  11. Rizzoli R, Greenspan SL, Bone G 3rd, Schnitzer TJ, Watts NB, Adami S, Foldes AJ, Roux C, Levine MA, Uebelhart B, Santora AC 2nd, Kaur A, Peverly CA, Orloff JJ, Alendronate Once-Weekly Study Group (2002) Two-year results of once-weekly administration of alendronate 70 mg for the treatment of postmenopausal osteoporosis. J Bone Miner Res 17:1988–1996

    Article  CAS  PubMed  Google Scholar 

  12. Okazaki R, Hagino H, Ito M, Sone T, Nakamura T, Mizunuma H, Fukunaga M, Shiraki M, Nishizawa Y, Ohashi Y, Matsumoto T (2012) Efficacy and safety of monthly oral minodronate in patients with involutional osteoporosis. Osteoporos Int 23:1737–1745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, HORIZON Pivotal Fracture Trial (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  CAS  PubMed  Google Scholar 

  14. Ensrud KE, Barrett-Connor EL, Schwartz A, Santora AC, Bauer DC, Suryawanshi S, Feldstein A, Haskell WL, Hochberg MC, Torner JC, Lombardi A, Black DM, Fracture Intervention Trial Long-Term Extension Research Group (2004) Randomized trial of effect of alendronate continuation versus discontinuation in women with low BMD: results from the Fracture Intervention Trial long-term extension. J Bone Miner Res 19:1259–1269

    Article  CAS  PubMed  Google Scholar 

  15. Black DM, Reid IR, Boonen S, Bucci-Rechtweg C, Cauley JA, Cosman F, Cummings SR, Hue TF, Lippuner K, Lakatos P, Leung PC, Man Z, Martinez RL, Tan M, Ruzycky ME, Su G, Eastell R (2012) The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res 27:243–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Watts NB, Chines A, Olszynski WP, McKeever CD, McClung MR, Zhou X, Grauer A (2008) Fracture risk remains reduced one year after discontinuation of risedronate. Osteoporos Int 19(3):365–372

    Article  CAS  PubMed  Google Scholar 

  17. Eastell R, Hannon RA, Wenderoth D, Rodriguez-Moreno J, Sawicki A (2011) Effect of stopping risedronate after long-term treatment on bone turnover. J Clin Endocrinol Metab 96:3367–3373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, Hanley DA, Kendler DL, Yuen CK, Lewiecki EM (2013) Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med 126:13–20

    Article  CAS  PubMed  Google Scholar 

  19. Seedor JG, Quartuccio HA, Thompson DD (1991) The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J Bone Miner Res 6:339–346

    Article  CAS  PubMed  Google Scholar 

  20. Bauss F, Russell RG (2004) Ibandronate in osteoporosis: preclinical data and rationale for intermittent dosing. Osteoporos Int 15:423–433

    Article  CAS  PubMed  Google Scholar 

  21. Hornby SB, Evans GP, Hornby SL, Pataki A, Glatt M, Green JR (2003) Long-term zoledronic acid treatment increases bone structure and mechanical strength of long bones of ovariectomized adult rats. Calcif Tissue Int 72:519–527

    Article  CAS  PubMed  Google Scholar 

  22. Kimoto A, Tanaka M, Nozaki K, Mori M, Fukushima S, Mori H, Shiroya T, Nakamura T (2013) Intermittent minodronic acid treatment with sufficient bone resorption inhibition prevents reduction in bone mass and strength in ovariectomized rats with established osteopenia comparable with daily treatment. Bone 55:189–197

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka M, Mori H, Kayasuga R, Ochi Y, Yamada H, Kawada N, Kawabata K (2014) Effect of intermittent and daily regimens of minodronic Acid on bone metabolism in an ovariectomized rat model of osteoporosis. Calcif Tissue Int 95:166–173

    Article  CAS  PubMed  Google Scholar 

  24. Fuchs RK, Phipps RJ, Burr DB (2008) Recovery of trabecular and cortical bone turnover after discontinuation of risedronate and alendronate therapy in ovariectomized rats. J Bone Miner Res 23:1689–1697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wronski TJ, Dann LM, Qi H, Yen CF (1993) Skeletal effects of withdrawal of estrogen and diphosphonate treatment in ovariectomized rats. Calcif Tissue Int 53:210–216

    Article  CAS  PubMed  Google Scholar 

  26. Ebetino FH, Hogan AM, Sun S, Tsoumpra MK, Duan X, Triffitt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna CE, Russell RG (2011) The relationship between the chemistry and biological activity of the bisphosphonates. Bone 49:20–33

    Article  CAS  PubMed  Google Scholar 

  27. Cremers S, Papapoulos S (2011) Pharmacology of bisphosphonates. Bone 49:642–649

    Article  Google Scholar 

  28. Mori H, Tanaka M, Kayasuga R, Kishikawa K, Ito M (2008) Efficacy of preventive and therapeutic treatments with minodronic acid on ovariectomized rat model of osteoporosis. Clin Pharmacol Ther (Japanese) 18:S-33–S-48

    Google Scholar 

  29. Tanaka M, Mori H, Kayasuga R, Ochi Y, Kawada N, Yamada H, Kishikawa K (2008) Long-term minodronic acid (ONO-5920/YM529) treatment suppresses increased bone turnover, plus prevents reduction in bone mass and bone strength in ovariectomized rats with established osteopenia. Bone 43:894–900

    Article  CAS  PubMed  Google Scholar 

  30. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  31. Usui T, Kawakami R, Watanabe T, Higuchi S (1994) Sensitive determination of a novel bisphosphonate, YM529, in plasma, urine and bone by high-performance liquid chromatography with fluorescence detection. J Chromatogr 652:67–72

    Article  CAS  PubMed  Google Scholar 

  32. Kasra M, Vanin CM, MacLusky NJ, Casper RF, Grynpas MD (1997) Effects of different estrogen and progestin regimens on the mechanical properties of rat femur. J Orthop Res 15:118–123

    Article  CAS  PubMed  Google Scholar 

  33. Fox J, Miller MA, Newman MK, Recker RR, Turner CH, Smith SY (2007) Effects of daily treatment with parathyroid hormone 1–84 for 16 months on density, architecture and biomechanical properties of cortical bone in adult ovariectomized rhesus monkeys. Bone 41:321–330

    Article  CAS  PubMed  Google Scholar 

  34. Nagira K, Hagino H, Kameyama Y, Teshima R (2013) Effects of minodronate on cortical bone response to mechanical loading in rats. Bone 53:277–283

    Article  CAS  PubMed  Google Scholar 

  35. Ito M, Nishida A, Nakamura T, Uetani M, Hayashi K (2002) Differences of three-dimensional trabecular microstructure in osteopenic rat models caused by ovariectomy and neurectomy. Bone 30:594–598

    Article  CAS  PubMed  Google Scholar 

  36. Iwamoto J, Seki A, Sato Y (2014) Effect of combined teriparatide and monthly minodronic acid therapy on cancellous bone mass in ovariectomized rats: a bone histomorphometry study. Bone 64:88–94

    Article  CAS  PubMed  Google Scholar 

  37. Usui T, Kamimura H (2008) Pharmacokinetics of minodronic acid hydrate, a novel bisphosphonate, in rats and dogs. Clin Pharmacol Ther (Japansese) 18:S-129–S-142

    Google Scholar 

  38. Khan SA, Kanis JA, Vasikaran S, Kline WF, Matuszewski BK, McCloskey EV, Beneton MN, Gertz BJ, Sciberras DG, Holland SD, Orgee J, Coombes GM, Rogers SR, Porras AG (1997) Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis. J Bone Miner Res 12:1700–1707

    Article  CAS  PubMed  Google Scholar 

  39. Germann PG, Ockert D, Heinrichs M (1998) Pathology of the oropharyngeal cavity in six strains of rats: predisposition of Fischer 344 rats for inflammatory and degenerative changes. Toxicol Pathol 26:283–289

    Article  CAS  PubMed  Google Scholar 

  40. Maita K, Hirano M, Harada T, Mitsumori K, Yoshida A, Takahashi K, Nakashima N, Kitazawa T, Enomoto A, Inui K, Shirasu Y (1986) An Outbreak of Esophagectasis in F344 Rats Jpn. J Vet Sci 48:i539–i546

    Google Scholar 

  41. Naito Y, Kuroda M, Uchiyama K, Mizushima K, Akagiri S, Takagi T, Handa O, Kokura S, Yoshida N, Ichikawa H, Yoshikawa T (2006) Inflammatory response of esophageal epithelium in combined-type esophagitis in rats: a transcriptome analysis. Int J Mol Med 18:821–828

    CAS  PubMed  Google Scholar 

  42. Varma M, Chai JK, Meguid MM, Laviano A, Gleason JR, Yang ZJ, Blaha V (1999) Effect of estradiol and progesterone on daily rhythm in food intake and feeding patterns in Fischer rats. Physiol Behav 68:99–107

    Article  CAS  PubMed  Google Scholar 

  43. Yamauchi H, Kushida K, Yamazaki K, Inoue T (1995) Assessment of spine bone mineral density in ovariectomized rats using DXA. J Bone Miner Res 10:1033–1039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Soh-ichi Takashima and Norio Muto (Ina Research Inc.) for their expertise and technical support in animal care and assessment. We are also grateful to Chihiro Hasegawa for his critical review of the manuscript.

Conflict of Interest

Makoto Tanaka, Hiroshi Mori, and Kazuhito Kawabata are research scientists at Ono Pharmaceutical Co., Ltd. Minodronic acid was launched by Ono Pharmaceutical Co., Ltd. and Astellas Pharma Inc.

Human and Animal Rights and Informed Consent

This study was approved by Ina Research Inc. (Nagano, Japan) and performed in accordance with the by-rules of the company, including all ethical aspects related to animal treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M., Mori, H. & Kawabata, K. Attenuation of Antiresorptive Action in Withdrawal of Minodronic Acid for Three Months After Treatment for Twelve Months in Ovariectomized Rats. Calcif Tissue Int 97, 402–411 (2015). https://doi.org/10.1007/s00223-015-0017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-0017-2

Keywords

Navigation