Skip to main content

Advertisement

Log in

Ibandronate in osteoporosis: preclinical data and rationale for intermittent dosing

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Ibandronate is a highly potent, nitrogen-containing bisphosphonate. Unlike most other bisphosphonates, it is under clinical development for both oral and intravenous (i.v.) administration. Ibandronate can be used in convenient intermittent regimens that may optimize therapeutic outcome with enhanced compliance by patients. The preclinical pharmacokinetics (PK) and pharmacology of ibandronate have been extensively explored in a large preclinical development program involving various recommended animal models of human osteoporosis. These experimental studies of ibandronate indicate that the preclinical pharmacology and PK profile of ibandronate are broadly similar to those of other nitrogen-containing bisphosphonates. The efficacy of intermittent administration of subcutaneous (s.c.) and i.v. ibandronate has been demonstrated in four animal models (rat, dog, minipig, and monkey). Thus in rats, dogs, and monkeys with estrogen depletion, and in minipigs with glucocorticoid-induced bone loss, ibandronate administered s.c. or i.v. with extended intervals between doses reduces bone turnover, increases bone mineral density, and maintains bone quality in a dose-dependent manner. Furthermore, studies in rats and dogs comparing continuous and intermittent treatment schedules indicate similar efficacy when the same cumulative dose is applied over the duration of the study. These studies with ibandronate illustrate the concept that the total cumulative dose of bisphosphonate administered determines the response, independent of whether the dose is given daily or less frequently in a given time period. The efficacy of intermittent regimens has also been verified in models of secondary osteoporosis due to secondary hyperparathyroidism or immobilization (both in rats), or due to glucocorticoids in minipigs. Important factors for determining efficacy and the magnitude of response are the doses given, the length of the interval between doses, and the underlying bone turnover rate. The mechanisms underlying the remarkable efficacy of intermittent bisphosphonate dosing are not fully understood and further research is needed. Importantly, ibandronate is the only bisphosphonate so far proven to reduce the risk of vertebral fractures significantly with a between-dose interval >2 months, in a prospective clinical trial. Collectively, the preclinical studies on ibandronate have provided a sound basis for the design of the convenient regimens currently being examined in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3a–c

Similar content being viewed by others

References

  1. Marcus R, Majumder S (2001) The nature of osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, London, p 3

  2. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Technical Report Series, No. 843. WHO, Geneva

  3. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  4. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359:1841–1850

    Article  PubMed  Google Scholar 

  5. Delmas PD (2002) Treatment of postmenopausal osteoporosis. Lancet 359:2018–2026

    Article  CAS  PubMed  Google Scholar 

  6. Cooper C (1997) The crippling consequences of fractures and their impact on quality of life. Am J Med 103:12S–17S

    CAS  Google Scholar 

  7. Johnell O (1997) The socioeconomic burden of fractures: today and in the 21st century. Am J Med 103:20S–26S

    CAS  PubMed  Google Scholar 

  8. National Osteoporosis Foundation (1998) Osteoporosis: review of the evidence for prevention, diagnosis and treatment and cost-effectiveness analysis. Osteoporos Int 9:S1–S88

    Google Scholar 

  9. Ray NF, Chan JK, Thamer M, Melton LJ 3rd (1997) Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 12:24–35

    CAS  PubMed  Google Scholar 

  10. Papapoulos SE (2001) Bisphosphonates in the management of postmenopausal osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, London, pp 631–649

  11. Brown J, Kendler D, McClung M et al (2002) The efficacy and tolerability of risedronate once a week for the treatment of postmenopausal osteoporosis. Calcif Tissue Int 71:103–111

    Article  CAS  PubMed  Google Scholar 

  12. Schnitzer T, Bone HG, Crepaldi G et al (2000) Therapeutic equivalence of alendronate 70 mg once-weekly and alendronate 10 mg daily in the treatment of osteoporosis. Alendronate Once-Weekly Study Group. Aging (Milan) 12:1–12

    Google Scholar 

  13. Caro J, Huybrechts K, Ishak K, Naujoks C (2002) The impact of adherence to osteoporosis therapy on fracture rates in actual practice. Value Health 5:127

    Google Scholar 

  14. Simon JA, Lewiecki EM, Smith ME, Petruschke RA, Wang L, Palmisano JJ (2002) Patient preference for once-weekly alendronate 70 mg versus once-daily alendronate 10 mg: a multicenter, randomized, open-label, crossover study. Clin Ther 24:1871−1886

    Article  CAS  PubMed  Google Scholar 

  15. Ralston SH, Thiebaud D, Herrmann Z et al (1997) Dose-response study of ibandronate in the treatment of cancer-associated hypercalcaemia. Br J Cancer 75:295–300

    CAS  PubMed  Google Scholar 

  16. Herrmann Z, Schoeter KH (1999) The new bisphosphonate ibandronate in the treatment of tumor-induced hypercalcemia. Onkologie 22:208–211

    Article  Google Scholar 

  17. Tripathy D, Budde M, Bergstrom B (2002) Oral daily ibandronate: an effective and convenient therapy for the reduction of skeletal complications in breast cancer patients with bone metastases (Bondronat MF4434 Study Group). Ann Oncol 13[Suppl 5]:168 (Abstract)

  18. Body JJ, Diel IJ, Lichinitser MR et al (2003) Ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases (MF4265 study group). Ann Oncol 14:1399–1405

    Article  PubMed  Google Scholar 

  19. Body JJ (2001) Dosing regimens and main adverse events of bisphosphonates. Semin Oncol 28[Suppl 11]:49–53

    Google Scholar 

  20. Russell RG, Croucher PI, Rogers MJ (1999) Bisphosphonates: pharmacology, mechanisms of action and clinical uses. Osteoporos Int 9:S66–S80

    PubMed  Google Scholar 

  21. Russell RG, Rogers MJ (1999) Bisphosphonates: from the laboratory to the clinic and back again. Bone 25:97–106

    Article  CAS  PubMed  Google Scholar 

  22. Mühlbauer RC, Bauss F, Schenk R et al (1991) BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Miner Res 6:1003−1011

    PubMed  Google Scholar 

  23. Bauss F, Mühlbauer RC (1994) BM 21.0955, monosodium salt monohydrate. Drugs Future 19:13–16

    Google Scholar 

  24. van Beek E, Hoekstra M, van de Ruit M, Lowik C, Papapoulos S (1994) Structural requirements for bisphosphonate actions in vitro. J Bone Miner Res 9:1875–1882

    PubMed  Google Scholar 

  25. Fleisch H (ed) (1995) Bisphosphonates in bone disease: from the laboratory to the patient. Parthenon, New York

    Google Scholar 

  26. Fleisch H (1998) Bisphosphonates: mechanisms of action. Endocr Rev 19:80–100

    CAS  PubMed  Google Scholar 

  27. Green JR (2001) Chemical and biological prerequisites for novel bisphosphonate molecules: results of comparative preclinical studies. Semin Oncol 28[Suppl 6]:4–10

  28. Bauss F (1997) Ibandronate in malignant bone diseases and osteoporosis: preclinical results. Onkologie 20:204–208

    Google Scholar 

  29. Schimmer R, Bauss F (2003) Effect of daily and intermittent use of ibandronate on bone mass and bone turnover in postmenopausal osteoporosis: a review of three phase II studies. Clin Ther 25:19–34

    Article  CAS  PubMed  Google Scholar 

  30. Pecherstorfer M, Ludwig H, Schlosser K et al (1996) Administration of the bisphosphonate ibandronate (BM 21.0955) by intravenous bolus injection. J Bone Miner Res 11:587–593

    CAS  PubMed  Google Scholar 

  31. Neugebauer G, Köhler W, Akinkunmi L et al (2001) Influence of peak ibandronic acid concentrations after 6 mg iv administration with shortened infusion time (15 and 30 minutes) on renal safety in man. Proc Am Soc Clin Oncol 20:122a (Abstract)

    Google Scholar 

  32. Reid DM, Adami S, Recker RR, Bonvoisin B, Schimmer RC, Miller P (2003) Intermittent intravenous ibandronate injection: a novel dosing option in postmenopausal osteoporosis. Osteoporos Int 14[Suppl 7]:S57 (Abstract)

  33. Miller P, Recker RR, Adami S, Bonvoisin B, Schimmer RC (2003) Rationale for intermittent intravenous ibandronate injections in postmenopausal osteoporosis. J Bone Miner Res 18[Suppl 2]:S263 (Abstract)

  34. Adami S, Delmas P, Felsenberg D et al (2002) Three-monthly 2 mg intravenous ibandronate bolus injections significantly increase bone mineral density in women with postmenopausal osteoporosis. Osteoporos Int 13[Suppl 1]:S14 (Abstract O36)

  35. Stakkestad JA, Benevolenskaya LI, Stepan JJ et al (2003) Intravenous ibandronate injections given every three months: a new treatment option to prevent bone loss in postmenopausal women. Ann Rheum Dis 62:969–975

    Article  CAS  PubMed  Google Scholar 

  36. World Health Organization (1998) Guidelines for preclinical evaluation and clinical trials in osteoporosis. WHO, Geneva

  37. Bonjour JP, Ammann P, Rizzoli R (1999) Importance of preclinical studies in the development of drugs for treatment of osteoporosis: a review related to the 1998 WHO guidelines. Osteoporos Int 9:379–393

    Article  CAS  PubMed  Google Scholar 

  38. Yamazaki I, Yamagucki H (1989) Characteristics of an ovariectomized osteopenic rat model. J Bone Miner Res 4:13–22

    CAS  PubMed  Google Scholar 

  39. Jerome CP, Turner CH, Lees CJ (1997) Decreased bone mass and strength in ovariectomized cynomolgus monkeys (Macaca fascicularis). Calcif Tissue Int 60:265−270

    Article  CAS  PubMed  Google Scholar 

  40. Faugere M-C, Friedler RM, Fanti P, Malluche HH (1990) Bone changes occurring early after cessation of ovarian function in beagle dogs: a histomorphometric study emplying sequential biopsies. J Bone Miner Res 5:263–272

    CAS  PubMed  Google Scholar 

  41. Committee for Proprietary Medicinal Products (CPMP) (2001) Note for guidance on involutional osteoporosis in women. European Agency for the Evaluation of Medicinal Products, Human Medicines Evaluation Unit, London

  42. United States Food and Drug Administration (1994) Guidelines for preclinical and clinical evaluation of agents used in the prevention or treatment of postmenopausal osteoporosis. U.S. Food and Drug Administration, Rockville, MD

  43. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–192

    CAS  PubMed  Google Scholar 

  44. Frost HM, Jee WSS (1992) On the rat model of human osteoporosis. Bone Miner 18:227–236

    CAS  PubMed  Google Scholar 

  45. Lin JH (1996) Bisphosphonates: a review of their pharmacokinetic properties. Bone 18:75–85

    CAS  PubMed  Google Scholar 

  46. Fleisch H (2001) Basic biology of bisphosphonates. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, London, pp 449–467

  47. Bauss F, Endele R, Besenfelder E, Hoelck J-P (2002) Ibandronate: Serum kinetics, tissue distribution and binding to bone following intravenous bolus injection. Calcif Tissue Int 70: 289–290

    Google Scholar 

  48. Bauss F, Lalla S, Endele R, Hothorn LH (2002) The effects of treatment with ibandronate on bone mass, architecture, biomechanical properties and bone concentration of ibandronate in ovariectomized aged rats. J Rheumatol 29:2200−2208

    CAS  PubMed  Google Scholar 

  49. Lin JH, Chen IW, Duggan DE (1992) Effects of dose, sex, and age on the disposition of alendronate, a potent antiosteolytic bisphosphonate, in rats. Drug Metab Dispos 20:473–478

    Google Scholar 

  50. Monier-Faugere MC, Friedler RM, Bauss F, Malluche HH (1993) A new bisphosphonate, BM 21.0955 prevents bone loss associated with cessation of ovarian function in experimental dogs. J Bone Miner Res 8:1345−1355

    CAS  PubMed  Google Scholar 

  51. Monier-Faugere MC, Geng Z, Paschalis EP et al (1999) Intermittent and continuous administration of the bisphosphonate ibandronate in ovariohysterectomized beagle dogs: effects on bone morphometry and mineral properties. J Bone Miner Res 14:1768−1778

    CAS  PubMed  Google Scholar 

  52. Fleisch H (1996) The bisphosphonate ibandronate, given daily as well as discontinuously, decreases bone resorption and increases calcium retention as assessed by 45C kinetics in the intact rat. Osteoporos Int 6:166–170

    CAS  PubMed  Google Scholar 

  53. Geng Z, Monier-Faugere MC, Bauss F, Malluche HH (2000) Short-term administration of the bisphosphonate ibandronate increases bone volume and prevents hyperparathyroid bone changes in mild experimental renal failure. Clin Nephrol 54:45–53

    CAS  PubMed  Google Scholar 

  54. Daphtary M, Ruff C, Lee J, Shapiro J, Bauss F, Schultheis L (2001) Effect of ibandronate on bone quality under 50% and 100% weight-bearing conditions. J Bone Miner Res 16[Suppl 1]:S363 (Abstract)

  55. Schultheis L, Ruff GB, Rastogi S et al (2000) Disuse bone loss in hindquarter suspended rats: partial weight-bearing, exercise and ibandronate treatment as countermeasures. J Gravit Physiol 7:P13–P14

    CAS  PubMed  Google Scholar 

  56. Smith SY, Recker RR, Hannan, M, Müller R, Bauss F (2003) Intermittent intravenous administration of the bisphosphonate ibandronate prevents bone loss and maintains bone strength and quality in ovariectomized cynomolgus monkeys. Bone 32:45–55

    Article  CAS  PubMed  Google Scholar 

  57. Glueer CC, Scholz-Ahrenz KE, Timm W et al (2002) The minipig is a good model for glucocorticoid-induced bone loss and shows efficacy of ibandronate treatment for this disorder. J Bone Miner Res 17[Suppl 1]:S371 (Abstract)

  58. Müller R, Bauss F, Smith SY, Hannan MK (2001) Mechano-structure relationships in normal, ovariectomized and ibandronate treated aged macaques as assessed by micro-tomographic imaging and biomechanical testing. 47th annual meeting, Orthop Res Soc, San Francisco, p 0066

  59. Bauss F, Wagner M, Hothorn LH (2002) The total administered dose of ibandronate determines its effect on bone mass and architecture in ovariectomized aged rats. J Rheumatol 29:990–998

    CAS  PubMed  Google Scholar 

  60. Lalla S, Hothorn LA, Haag N, Bader R, Bauss F (1998) Lifelong administration of high doses of ibandronate increases bone mass and maintains bone quality of lumbar vertebrae in rats. Osteoporos Int 8:97−103

    CAS  PubMed  Google Scholar 

  61. Malluche HH, Shermann D, Meyer W, Ritz E, Norman AW, Massry SG (1982) Effects of long-term infusion of physiologic doses of 1–34 PTH on bone. Am J Physiol 242:F197–F201

    CAS  PubMed  Google Scholar 

  62. Lundon K, Grynpas M (1993) The long-term effect of ovariectomy on the quality and quantity of cortical bone in the young cynomolgus monkey: a comparison of density fractionation and histomorphometric techniques. Bone 14:389−395

    CAS  PubMed  Google Scholar 

  63. Rizzoli R, Caverzasio J, Bauss F, Bonjour JP (1992) Inhibition of bone resorption by the bisphosphonate BM 21.0955 is not associated with an alteration of the renal handling of calcium in rats infused with parathyroid hormone-related protein. Bone 13:321–325

    CAS  PubMed  Google Scholar 

  64. Wallach S, Feinblatt JD, Carstens JH Jr, Avioli LV (1992) The bone “quality” problem. Calcif Tissue Int 51:169–172

    CAS  PubMed  Google Scholar 

  65. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    CAS  PubMed  Google Scholar 

  66. Burr DB (1993) Remodeling and the repair of fatigue damage. Calcif Tissue Int 53[Suppl 1]:S75–S81

    Google Scholar 

  67. Kinney JH, Ladd AJC (1998) The relationship between three-dimensional connectivity and the elastic properties of trabecular bone. J Bone Miner Res 13:839–845

    CAS  PubMed  Google Scholar 

  68. Kurth AHA, Kim S-Z, Sedlmeyer I, Hovy L, Bauss, F (2000) Treatment with ibandronate preserves bone in experimental tumour-induced bone loss. J Bone Joint Surg Br 82-B:126–130

    Google Scholar 

  69. Kurth AA, Kim S-Z, Sedlmeyer I, Bauss F, Shea M (2002) Ibandronate treatment decreases the effects of tumor-associated lesions on bone density and strength in the rat. Bone 30:300–306

    Article  CAS  PubMed  Google Scholar 

  70. Guy JA, Shea M, Peter CP, Morrissey R, Hayes WC (1993) Continuous alendronate treatment throughout growth, maturation and aging in the rat results in increases in bone mass and mechanical properties. Calcif Tissue Int 53:283–8

    CAS  PubMed  Google Scholar 

  71. Bauss F, Schenk RK, Hört S, Müller-Beckmann B, Sponer G(2003) New model for simulation of fracture repair in full-grown beagle dogs: model characterization and results from a long-term study with ibandronate. J Pharm Tox Methods (in press)

  72. Affentranger U, Bauss F, Qin L, Cordey J, McIff T, Rahn BA (1995) Mechanical properties of cancellous and cortical bone after long term ibandronate dosing in beagle dogs. Bone 17:604

    Article  Google Scholar 

  73. Eberhardt C, Sayer J, Grüner E, Schwarz M, Bauss F, Kurth AA (2002) Ibandronate reduces the time of implant osseointergration in a rat model. Bone 30[Suppl]:40S (Abstract)

  74. Gasser JA, Green JR (2001) Single intravenous administration of zoledronic acid exerts a long-term protective effect against cancellous and cortical bone loss in ovariectomized rats. J Bone Miner Res 16[Suppl 1]:SU414 (Abstract)

  75. Ammann P, Rizzoli R, Caverzasio J, Shigematsu T, Slosman D, Bonjour JP (1993) Effects of the bisphosphonate tiludronate on bone resorption, calcium balance, and bone mineral density. J Bone Miner Res 8:1491–1498

    CAS  PubMed  Google Scholar 

  76. Seedor JG, Quartuccio HA, Thompson DD (1991) The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J Bone Miner Res 6:339–346

    CAS  PubMed  Google Scholar 

  77. Rodan GA, Seedor JG, Balena R (1993) Preclinical pharmacology of alendronate. Osteoporos Int 3[Suppl 3]:S7–12

    Google Scholar 

  78. Kimmel DB (1991) Quantitative histological changes in the proximal tibial growth cartilage of aged female rats. Cells Mater [Suppl 1]:11–18

    Google Scholar 

  79. Russell RG (2002) Understanding intermittent therapy: potency and persistence. Osteoporos Int 13[Suppl 3]:S77

  80. Leu C, Rodan GA, Reszka AA (2003) Relative binding affinities of bisphosphonates for human bone. J Bone Miner Res 18[Suppl 2]:S374 (Abstract)

  81. Fournier P, Boissier S, Filleuer S, Gugliemmi J, Cabon M, Clézardin P (2002) Bisphsophonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62:6538–6544

    CAS  PubMed  Google Scholar 

  82. Fleisch H (ed) (2000) Bisphosphonates in bone disease: from the laboratory to the patient. Academic Press, San Diego, CA

    Google Scholar 

  83. Nancollas GH, Tang R, Gulde S, Ebetino FH, Phipps RJ, Russell RGG (2002) Mineral binding affinities and zeta potential of bisphosphonates. J Bone Miner Res 17 [Suppl 1]:S368 (Abstract)

  84. Delmas P, Meunier P (1981) Les diphosphonates (DP) et le dichlormethylene diphosphonate (Cl2MDP). In: Association Corporative des Etudiants en Médicine de Lyon, Lyon, pp 16–19

  85. Laurén L, Österman T, Kari T (1991) Pharmakokinetics of clodronate after single intravenous, intramuscular and subcutaneous injections to rats. Pharmacol Toxicol 69:365–368

    PubMed  Google Scholar 

  86. Mönkkönen J (1988) A one year follow-up study of the distribution of14C-Clodronate in mice and rats. Pharmacol Toxicol 62:51–53

    PubMed  Google Scholar 

  87. Lin JH, Duggan DE, Chen I-W, Ellsworth RL (1991) Physiological disposition of alendronate, a potent anti-osteolytic bisphosphonate, in laboratory animals. Drug Metab Dispos 19:926–932

    Google Scholar 

  88. FDA (2002) Actonel (risedronate sodium) tablets. FDA: Center for Drug Evaluation and Research, Rockville, MD. http://www.fda.gov/cder/foi/nda/98/20835_Actonel.htm Cited 7 March 2004

  89. FDA (2003) Zometa (zoledronic acid) injection. FDA: Center for Drug Evaluation and Research, Rockville, MD. http://www.fda.gov/cder/foi/nda/2001/21-233_Zometa.htm Cited 7 March 2004

  90. Reid IR, Brown JP, Burckhardt P (2002) Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 346:653–661

    Article  CAS  Google Scholar 

  91. Cooper C, Bianchi G, Sørensen OH et al (2002) Importance of the total dose concept with bisphosphonates in postmenopausal osteoporosis: recent clinical evidence from ibandronate. Osteoporos Int 13[Suppl 3]:S34 (Abstract)

  92. Riis BJ, Ise J, von Stein T, Bagger Y, Christiansen C (2001) Ibandronate: a comparison of oral daily dosing versus intermittent dosing in postmenopausal osteoporosis. J Bone Miner Res 6:1871–1878

    Google Scholar 

  93. Delmas P, Recker R, Stakkestad JA et al (2002) Oral ibandronate significantly reduces fracture risk in postmenopausal osteoporosis when administered daily or with a unique drug-free interval: results from a pivotal phase III study. Osteoporos Int 13[Suppl 1]:S15 (Abstract)

  94. Ringe JD, Dorst A, Faber H, Ibach K, Preuss J (2003) Three-monthly ibandronate bolus injection offers favourable tolerability and sustained efficacy advantage over two years in established corticosteroid-induced osteoporosis. J Rheumatol (in press)

  95. Stakkestad J, Nordby A, Skag A et al (2003) Three-monthly intravenous ibandronate injections: a novel treatment option to prevent bone loss in postmenopausal women. Ann Rheum Dis (in press)

  96. Meunier PJ, Recker RR, Weinstein RS, Chesnut III CH, Bonvoisin B, Mahoney P (2003) Bone histomorphometric evaluation of daily and intermittent oral ibandronate in postmenopausal osteoporosis. (in press)

  97. Cooper C, Delmas PD, Coutant K, Bonvoisin B, Recker RR (2003) Oral monthly ibandronate in postmenopausal osteoporosis: rationale and design of the MOBILE study. Osteoporos Int 14[Suppl 7]:S55 (Abstract P213)

  98. Adami S, Recker RR, Reid DM et al (2003) Intermittent ibandronate injections in postmenopausal osteoporosis: rationale and design of the Dosing IntraVenous Administration (DIVA) study. Osteoporos Int 14[Suppl 7]:S56 (Abstract P217)

  99. Ayd FJ Jr (1974) Single daily dose of antidepressants. JAMA 230:263−264

    Article  PubMed  Google Scholar 

  100. Coutts JA, Gibson NA, Paton JY (1992) Measuring compliance with inhaled medication in asthma. Arch Dis Child 67:332−333

    CAS  PubMed  Google Scholar 

  101. Cramer JA, Mattson RH, Prevey ML, Scheyer RD, Ouellette VL (1989) How often is medication taken as prescribed? a novel assessment technique. JAMA 261:3273−3277

    Article  CAS  PubMed  Google Scholar 

  102. Greenberg RN (1984) Overview of patient compliance with medication dosing: a literature review. Clin Ther 6:592−599

    CAS  PubMed  Google Scholar 

  103. Venturini F, Nichol MB, Sung JC, Bailey KL, Cody M, McCombs JS (1999) Compliance with sulfonylureas in a health maintenance organization: a pharmacy record-based study. Ann Pharmacother 33:281−288

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieder Bauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauss, F., Russell, R.G.G. Ibandronate in osteoporosis: preclinical data and rationale for intermittent dosing. Osteoporos Int 15, 423–433 (2004). https://doi.org/10.1007/s00198-004-1612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1612-7

Keywords

Navigation