Skip to main content

Advertisement

Log in

Ultrastructural and Mineral Phase Characterization of the Bone-Like Matrix Assembled in F-OST Osteoblast Cultures

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Cell cultures are often used to study bone mineralization; however, not all systems achieve a bone-like matrix formation. In this study, the mineralized matrix assembled in F-OST osteoblast cultures was analyzed, with the aim of establishing a novel model for bone mineralization. The ultrastructure of the cultures was investigated using scanning electron microscopy, atomic force microscopy, and transmission electron microscopy (TEM). The mineral phase was characterized using conventional and high-resolution TEM, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and solid-state 31P and 1H nuclear magnetic resonance. F-OST osteoblast cultures presented a clear nodular mineralization pattern. The chief features of the mineralizing nodules were globular accretions ranging from about 100 nm to 1.5 μm in diameter, loaded with needle-shaped crystallites. Accretions seemed to bud from the cell membrane, increase in size, and coalesce into larger ones. Arrays of loosely packed, randomly oriented collagen fibrils were seen along with the accretions. Mineralized fibrils were often observed, sometimes in close association with accretions. The mineral phase was characterized as a poorly crystalline hydroxyapatite. The Ca/P atomic ratio was 1.49 ± 0.06. The presence of OH was evident. The lattice parameters were a = 9.435 Å and c = 6.860 Å. The average crystallite size was 20 nm long and 10 nm wide. Carbonate substitutions were seen in phosphate and OH sites. Water was also found within the apatitic core. In conclusion, F-OST osteoblast cultures produce a bone-like matrix and may provide a good model for bone mineralization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weiner S, Wagner HD (1998) The material bone: structure–mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  2. Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498

    Article  CAS  Google Scholar 

  3. Nanci A (1999) Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol 126(3):256–269

    Article  PubMed  CAS  Google Scholar 

  4. Pasteris JD, Wopenka B, Valsami-Jones E (2008) Bone and tooth mineralization: why apatite? Elements 4:97–104

    Article  CAS  Google Scholar 

  5. Cazalbou S, Combes C, Eichert D, Rey C (2004) Adaptative physico-chemistry of bio-related calcium phosphates. J Mater Chem 14:2148–2153

    Article  CAS  Google Scholar 

  6. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MM, Beck LW (2006) Three structural roles for water in bone observed by solid-state NMR. Biophys J 90(10):3722–3731

    Article  PubMed  CAS  Google Scholar 

  7. Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20(6):1013–1021

    Article  PubMed  CAS  Google Scholar 

  8. Landis WJ, Silver FH (2002) The structure and function of normally mineralizing avian tendons. Comp Biochem Physiol A Mol Integr Physiol 133(4):1135–1157

    Article  PubMed  Google Scholar 

  9. Anderson HC (2003) Matrix vesicles and calcification. Curr Rheumatol Rep 5(3):222–226

    Article  PubMed  Google Scholar 

  10. Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20(5):249–265

    Article  PubMed  Google Scholar 

  11. Midura RJ, Wang A, Lovitch D, Law D, Powell K, Gorski JP (2004) Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem 279(24):25464–25473

    Article  PubMed  CAS  Google Scholar 

  12. Sela J, Gross UM, Kohavi D, Shani J, Dean DD, Boyan BD, Schwartz Z (2000) Primary mineralization at the surfaces of implants. Crit Rev Oral Biol Med 11(4):423–436

    Article  PubMed  CAS  Google Scholar 

  13. Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6(3):879–885

    PubMed  CAS  Google Scholar 

  14. Bonucci E (2007) The organic–inorganic relationships in calcifying matrices. In: Biological calcification: normal and pathological processes in the early stages. Springer, Berlin, pp 443–489

  15. Parker E, Shiga A, Davies JE (2000) Growing human bone in vitro. In: Davies JE (ed) Bone engineering. Em Squared, Toronto, pp 63–77

    Google Scholar 

  16. Kuhn LT, Wu Y, Rey C, Gerstenfeld LC, Grynpas MD, Ackerman JL, Kim HM, Glimcher MJ (2000) Structure, composition, and maturation of newly deposited calcium-phosphate crystals in chicken osteoblast cell cultures. J Bone Miner Res 15(7):1301–1309

    Article  PubMed  CAS  Google Scholar 

  17. Barragan-Adjemian C, Nicolella D, Dusevich V, Dallas MR, Eick JD, Bonewald LF (2006) Mechanism by which MLO-A5 late osteoblasts/early osteocytes mineralize in culture: similarities with mineralization of lamellar bone. Calcif Tissue Int 79(5):340–353

    Article  PubMed  CAS  Google Scholar 

  18. Boskey AL, Roy R (2008) Cell culture systems for studies of bone and tooth mineralization. Chem Rev 108(11):4716–4733

    Article  PubMed  CAS  Google Scholar 

  19. Bonewald LF, Harris SE, Rosser J, Dallas MR, Dallas SL, Camacho NP, Boyan B, Boskey A (2003) von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 72(5):537–547

    Article  PubMed  CAS  Google Scholar 

  20. Declercq HA, Verbeeck RM, De Ridder LI, Schacht EH, Cornelissen MJ (2005) Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures. Biomaterials 26(24):4964–4974

    Article  PubMed  CAS  Google Scholar 

  21. Hoemann CD, El-Gabalawy H, McKee MD (2009) In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol (Paris) 57(4):318–323

    Article  CAS  Google Scholar 

  22. Balduino A, Hurtado SP, Frazão P, Takiya CM, Alves LM, Nasciutti LE, El-Cheikh MC, Borojevic R (2005) Bone marrow subendosteal microenvironment harbours functionally distinct haemosupportive stromal cell populations. Cell Tissue Res 319(2):255–266

    Article  PubMed  Google Scholar 

  23. Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39(6):365–375

    Article  PubMed  CAS  Google Scholar 

  24. Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci USA 105(35):12748–12753

    Article  PubMed  CAS  Google Scholar 

  25. Shih WJ, Wang MC, Hon MH (2005) Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant. J Cryst Growth 275(1–2):2339–2344

    Article  Google Scholar 

  26. Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84(3):2021–2029

    Article  PubMed  CAS  Google Scholar 

  27. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45(3):157–164

    Article  PubMed  CAS  Google Scholar 

  28. Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the v3PO4 domain. Calcif Tissue Int 49(6):383–388

    Article  PubMed  CAS  Google Scholar 

  29. Cho G, Wu Y, Ackerman JL (2003) Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300(5622):1123–1127

    Article  PubMed  CAS  Google Scholar 

  30. Kaflak-Hachulska A, Samoson A, Kolodziejski W (2003) 1H MAS and 1H–31P CP/MAS NMR study of human bone mineral. Calcif Tissue Int 73(5):476–486

    Article  PubMed  CAS  Google Scholar 

  31. Kolmas J, Kolodziejski W (2007) Concentration of hydroxyl groups in dental apatites: a solid-state 1H MAS NMR study using inverse 31P–1H cross-polarization. Chem Commun (Camb) 42:4390–4392

    Article  Google Scholar 

  32. Carter DH, Hatton PV, Aaron JE (1997) The ultrastructure of slam-frozen bone mineral. Histochem J 29(10):783–793

    Article  PubMed  CAS  Google Scholar 

  33. Nanci A, Zalzal S, Gotoh Y, McKee MD (1996) Ultrastructural characterization and immunolocalization of osteopontin in rat calvarial osteoblast primary cultures. Microsc Res Tech 33(2):214–231

    Article  PubMed  CAS  Google Scholar 

  34. Rohde M, Mayer H (2007) Exocytotic process as a novel model for mineralization by osteoblasts in vitro and in vivo determined by electron microscopic analysis. Calcif Tissue Int 80(5):323–336

    Article  PubMed  CAS  Google Scholar 

  35. Bhargava U, Bar-Lev M, Bellows CG, Aubin JE (1988) Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells. Bone 9(3):155–163

    Article  PubMed  CAS  Google Scholar 

  36. Lowe J, Bab I, Stein H, Sela J (1983) Primary calcification in remodeling haversian systems following tibial fracture in rats. Clin Orthop Relat Res 176:291–297

    PubMed  Google Scholar 

  37. Midura RJ, Vasanji A, Su X, Wang A, Midura SB, Gorski JP (2007) Calcospherulites isolated from the mineralization front of bone induce the mineralization of type I collagen. Bone 41(6):1005–1016

    Article  PubMed  CAS  Google Scholar 

  38. Ecarot-Charrier B, Shepard N, Charette G, Grynpas M, Glorieux FH (1988) Mineralization in osteoblast cultures: a light and electron microscopic study. Bone 9(3):147–154

    Article  PubMed  CAS  Google Scholar 

  39. Majeska RJ, Gronowicz GA (2002) Current methodologic issues in cell and tissue culture. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 1529–1541

    Chapter  Google Scholar 

  40. Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10(10):1589–1601

    Article  PubMed  CAS  Google Scholar 

  41. Cazalbou S, Combes C, Eichert D, Rey C, Glimcher MJ (2004) Poorly crystalline apatites: evolution and maturation in vitro and in vivo. J Bone Miner Metab 22(4):310–317

    Article  PubMed  Google Scholar 

  42. Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA Jr (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39(3):434–442

    Article  PubMed  CAS  Google Scholar 

  43. Rey C, Hina A, Tofighi A, Glimcher MJ (1995) Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro. Cells Mater 5(4):345–356

    CAS  Google Scholar 

  44. Rey C, Miquel JL, Facchini L, Legrand AP, Glimcher MJ (1995) Hydroxyl groups in bone mineral. Bone 16(5):583–586

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge COPPE/UFRJ for the SEM facilities and technical support, LNLS for the HRTEM facilities, M. M. Medeiros (ICB/UFRJ) for her support in electron microscopic analysis, F. P. Almeida (IMPPG/UFRJ) for his assistance in SEM analyses, J. Gomes Filho (CBPF) for his contribution in AFM analysis, V. C. A. Moraes and V. A. Ferraz (CBPF) for their support in the XRD analyses, and C. L. R. Fragoso for his assistance in the FTIR analyses. This study was supported by CNPq, CAPES, FAPERJ, and FINEP Brazilian agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Farina.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Querido, W., Abraçado, L.G., Rossi, A.L. et al. Ultrastructural and Mineral Phase Characterization of the Bone-Like Matrix Assembled in F-OST Osteoblast Cultures. Calcif Tissue Int 89, 358–371 (2011). https://doi.org/10.1007/s00223-011-9526-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9526-9

Keywords

Navigation