Skip to main content
Log in

Mechanism by which MLO-A5 Late Osteoblasts/Early Osteocytes Mineralize in Culture: Similarities with Mineralization of Lamellar Bone

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The mechanisms whereby bone mineralizes are unclear. To study this process, we used a cell line, MLO-A5, which has highly elevated expression of markers of the late osteoblast such as alkaline phosphatase, bone sialoprotein, parathyroid hormone type 1 receptor, and osteocalcin and will mineralize in sheets, not nodules. In culture, markers of osteocytes and dendricity increase with time, features of differentiation from a late osteoblast to an early osteocyte. Mineral formation was examined using transmission electron microscopy, scanning electron microscopy with energy-dispersive X-ray analysis, and atomic force microscopy. At 3–4 days of culture, spheres of approximately 20–50 nm containing calcium and phosphorus were observed budding from and associated with developing cellular projections. By 5–6 days, these calcified spheres were associated with collagen fibrils, where over time they continued to enlarge and to engulf the collagen network. Coalescence of these mineralized spheres and collagen-mediated mineralization were responsible for the mineralization of the matrix. Similar calcified spheres were observed in cultured fetal rat calvarial cells and in murine lamellar bone. We propose that osteoid-osteocytes generate spherical structures that calcify during the budding process and are fully mineralized on their developing cellular processes. As the cellular process narrows in diameter, these mineralized structures become associated with and initiate collagen-mediated mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

References

  1. Bordier MP, Miravet L, Ryckerwaert A, Rasmussen H (1976) Morphological and morphometrical characteristics of the mineralization front. A vitamin D regulated sequence of bone remodeling. In: Meunier PJ (ed), Bone Histomorphometry. Armour Montagu, Paris, pp 335–354

    Google Scholar 

  2. Nijweide PJ, van der Plas A, Scherft JP (1981) Biochemical and histological studies on various bone cell preparations. Calcif Tissue Int 33:529–540

    Article  PubMed  CAS  Google Scholar 

  3. Palumbo C (1986) A three-dimensional ultrastructural study of osteoid-osteocytes in the tibia of chick embryos. Cell Tissue Res 246:125–131

    Article  PubMed  CAS  Google Scholar 

  4. Owen M (1995) Cell population kinetics of an osteogenic tissue. I. Clin Orthop Relat Res 1963:3–7

    PubMed  Google Scholar 

  5. Mikuni-Takagaki Y, Kakai Y, Satoyoshi M, Kawano E, Suzuki Y, Kawase T, Saito S (1995) Matrix mineralization and the differentiation of osteocyte-like cells in culture. J Bone Miner Res 10:231–242

    PubMed  CAS  Google Scholar 

  6. Boskey AL (1996) Matrix proteins and mineralization: an overview. Connect Tissue Res 35:357–363

    PubMed  CAS  Google Scholar 

  7. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317(pt 1):59–64

    PubMed  CAS  Google Scholar 

  8. Blair HJ, Gormally E, Uwechue IC, Boyd Y (1998) Mouse mutants carrying deletions that remove the genes mutated in Coffin-Lowry syndrome and lactic acidosis. Hum Mol Genet 7:549–555

    Article  PubMed  CAS  Google Scholar 

  9. Strom TM, Francis F, Lorenz B, Boddrich A, Econs MJ, Lehrach H, Meitinger T (1997) Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum Mol Genet 6:165–171

    Article  PubMed  CAS  Google Scholar 

  10. Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD, Brown TA (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278:1998–2007

    Article  PubMed  CAS  Google Scholar 

  11. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267–6276

    Article  PubMed  CAS  Google Scholar 

  12. Boskey AL (1998) Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem Suppl 30–31:83–91

    Article  PubMed  Google Scholar 

  13. Sela J, Schwartz Z, Swain LD, Boyan BD (1992) The Role of Matrix Vesicles in Calcification. CRC Press, Boca Raton, FL

    Google Scholar 

  14. Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72

    Article  PubMed  CAS  Google Scholar 

  15. Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280

    PubMed  Google Scholar 

  16. Bonucci E (1979) Presence of “crystal ghosts” in bone nodules. Calcif Tissue Int 29:181–182

    Article  PubMed  CAS  Google Scholar 

  17. Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265

    Article  PubMed  Google Scholar 

  18. Glimcher MJ (1989) Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo. Anat Rec 224:139–153

    Article  PubMed  CAS  Google Scholar 

  19. Landis WJ (1999) An overview of vertebrate mineralization with emphasis on collagen-mineral interaction. Gravit Space Biol Bull 12:15–26

    PubMed  CAS  Google Scholar 

  20. Landis WJ, Hodgens KJ, Song MJ, Arena J, Kiyonaga S, Marko M, Owen C, McEwen BF (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117:24–35

    Article  PubMed  CAS  Google Scholar 

  21. Arsenault AL, Kohler DM (1994) Image analysis of the extracellular matrix. Microsc Res Tech 28:409–421

    Article  PubMed  CAS  Google Scholar 

  22. Landis WJ, Silver FH (2002) The structure and function of normally mineralizing avian tendons. Comp Biochem Physiol A Mol Integr Physiol 133:1135–1157

    Article  PubMed  Google Scholar 

  23. Kato Y, Boskey A, Spevak L, Dallas M, Hori M, Bonewald LF (2001) Establishment of an osteoid preosteocyte-like cell MLO-A5 that spontaneously mineralizes in culture. J Bone Miner Res 16:1622–1633

    Article  PubMed  CAS  Google Scholar 

  24. Dallas SL, Keene DR, Bruder SP, Saharinen J, Sakai LY, Mundy GR, Bonewald LF (2000) Role of the latent transforming growth factor beta binding protein 1 in fibrillin-containing microfibrils in bone cells in vitro and in vivo. J Bone Miner Res 15:68–81

    Article  PubMed  CAS  Google Scholar 

  25. Dean DD, Schwartz Z, Bonewald L, Muniz OE, Morales S, Gomez R, Brooks BP, Qiao M, Howell DS, Boyan BD (1994) Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycan-degrading metalloproteinases after addition of beta-glycerophosphate and ascorbic acid. Calcif Tissue Int 54:399–408

    Article  PubMed  CAS  Google Scholar 

  26. Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE (1998) Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 142:295–305

    Article  PubMed  CAS  Google Scholar 

  27. Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF (1997) Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res 12:2014–2023

    Article  PubMed  CAS  Google Scholar 

  28. Midura RJ, Wang A, Lovitch D, Law D, Powell K, Gorski JP (2004) Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem 279:25464–25473

    Article  PubMed  CAS  Google Scholar 

  29. Bonewald LF, Wakefield L, Oreffo RO, Escobedo A, Twardzik DR, Mundy GR (1991) Latent forms of transforming growth factor-beta (TGF-ß) derived from bone cultures: identification of a naturally occurring 100-kDa complex with similarity to recombinant latent TGF-ß. Mol Endocrinol 5:741–751

    Article  PubMed  CAS  Google Scholar 

  30. Farr A, Nelson A, Hosier S (1992) Characterization of an antigenic determinant preferentially expressed by type I epithelial cells in the murine thymus. J Histochem Cytochem 40:651–664

    PubMed  CAS  Google Scholar 

  31. Farr AG, Berry ML, Kim A, Nelson AJ, Welch MP, Aruffo A (1992) Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. J Exp Med 176:1477–1482

    Article  PubMed  CAS  Google Scholar 

  32. Bonewald LF, Harris SE, Rosser J, Dallas MR, Dallas SL, Camacho NP, Boyan B, Boskey A (2003) von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 72:537–547

    Article  PubMed  CAS  Google Scholar 

  33. Nanci A, Zalzal S, Gotoh Y, McKee MD (1996) Ultrastructural characterization and immunolocalization of osteopontin in rat calvarial osteoblast primary cultures. Microsc Res Tech 33:214–231

    Article  PubMed  CAS  Google Scholar 

  34. Arsenault AL (1988) Crystal-collagen relationships in calcified turkey leg tendons visualized by selected-area dark field electron microscopy. Calcif Tissue Int 43:202–212

    PubMed  CAS  Google Scholar 

  35. Ghosh-Choudhury N, Windle JJ, Koop BA, Harris MA, Guerrero DL, Wozney JM, Mundy GR, Harris SE (1996) Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice. Endocrinology 137:331–339

    Article  PubMed  CAS  Google Scholar 

  36. Schulze E, Witt M, Kasper M, Lowik CW, Funk RH (1999) Immunohistochemical investigations on the differentiation marker protein E11 in rat calvaria, calvaria cell culture and the osteoblastic cell line ROS 17/2.8. Histochem Cell Biol 111:61–69

    Article  PubMed  CAS  Google Scholar 

  37. Wetterwald A, Hoffstetter W, Cecchini MG, Lanske B, Wagner C, Fleisch H, Atkinson M (1996) Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone 18:125–132

    Article  PubMed  CAS  Google Scholar 

  38. Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M, Harris SE, Feng JQ, Bonewald LF (2006) E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26:4539–4552

    Article  PubMed  CAS  Google Scholar 

  39. Barragan-Adjemian C, Nicolella D, Dusevich V, Dallas M, Eick JD, Bonewald L (2004) A proposed model for the mineralization of bone. In: Landis WJ, Sodek J (eds), 8th International Conference on the Chemistry and Biology of Mineralized Tissues. Banff, Alberta, Canada, pp 47–50

    Google Scholar 

  40. Franz-Odendaal TA, Hall BK, Witten PE (2006) Buried alive: how osteoblasts become osteocytes. Dev Dyn 235:176–190

    Article  PubMed  CAS  Google Scholar 

  41. Anderson HC (1967) Electron microscopic studies of induced cartilage development and calcification. J Cell Biol 35:81–101

    Article  PubMed  CAS  Google Scholar 

  42. Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20:33–50

    Article  PubMed  CAS  Google Scholar 

  43. Anderson HC (1983) Calcific diseases. A concept. Arch Pathol Lab Med 107:341–348

    PubMed  CAS  Google Scholar 

  44. Sela J, Schwartz Z, Amir D, Swain LD, Boyan BD (1992) The effect of bone injury on extracellular matrix vesicle proliferation and mineral formation. Bone Miner 17:163–167

    Article  PubMed  CAS  Google Scholar 

  45. Bellows CG, Aubin JE, Heersche JN, Antosz ME (1986) Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int 38:143–154

    PubMed  CAS  Google Scholar 

  46. Lowe J, Bab I, Stein H, Sela J (1983) Primary calcification in remodeling haversian systems following tibial fracture in rats. Clin Orthop Relat Res 176:291–297

    PubMed  Google Scholar 

  47. Aaron JE, Oliver B, Clarke N, Carter DH (1999) Calcified microspheres as biological entities and their isolation from bone. Histochem J 31:455–470

    Article  PubMed  CAS  Google Scholar 

  48. Gorski JP, Wang A, Lovitch D, Law D, Powell K, Midura RJ (2004) Extracellular bone acidic glycoprotein-75 defines condensed mesenchyme regions to be mineralized and localizes with bone sialoprotein during intramembranous bone formation. J Biol Chem 279:25455–25463

    Article  PubMed  CAS  Google Scholar 

  49. McKee MD, Farach-Carson MC, Butler WT, Hauschka PV, Nanci A (1993) Ultrastructural immunolocalization of noncollagenous (osteopontin and osteocalcin) and plasma (albumin and alpha 2HS-glycoprotein) proteins in rat bone. J Bone Miner Res 8:485–496

    Article  PubMed  CAS  Google Scholar 

  50. Kajander EO, Ciftcioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci USA 95:8274–8279

    Article  PubMed  CAS  Google Scholar 

  51. Cisar JO, Xu DQ, Thompson J, Swaim W, Hu L, Kopecko DJ (2000) An alternative interpretation of nanobacteria-induced biomineralization. Proc Natl Acad Sci USA 97:11511–11515

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the help of Dr. Jian Feng in the preparation of the murine bone. This study was supported by National Institutes of Health grants AR46798 and DEO7294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Barragan-Adjemian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barragan-Adjemian, C., Nicolella, D., Dusevich, V. et al. Mechanism by which MLO-A5 Late Osteoblasts/Early Osteocytes Mineralize in Culture: Similarities with Mineralization of Lamellar Bone. Calcif Tissue Int 79, 340–353 (2006). https://doi.org/10.1007/s00223-006-0107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0107-2

Keywords

Navigation