Skip to main content

Advertisement

Log in

Bone marrow subendosteal microenvironment harbours functionally distinct haemosupportive stromal cell populations

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In adult animals, bone marrow is the major site of blood cell production, which is controlled by interactions between the local stroma and blood cell progenitors. The endosteal/subendosteal environment comprises bone-lining and adjacent reticular cells and sustains haemopoietic stem cell (HSC) self-renewal, proliferation and differentiation. We have questioned the specific role of each of these stroma cells in controlling HSC fate. We have isolated two distinct stroma-cell populations containing subendosteal reticulocytes (F-RET) and osteoblasts (F-OST) from periosteum-free fragments of murine femurs by a two-step collagenase-digestion procedure. Both populations produce similar extracellular matrix (collagen I, laminin, fibronectin, decorin), except for collagen IV, which is low in F-OST. They also express osteogenic markers: osteopontin, osteonectin, bone sialoprotein and alkaline phosphatase (ALP). The quantity and activity of ALP are however higher in F-OST. When co-cultured with bone marrow mononuclear cells or lineage-negative haemopoietic progenitors, F-OST stroma induces low proliferation and high maintenance of early haemopoietic progenitors, whereas F-RET stroma induces high short-term proliferation and differentiation. Analysis by reverse transcription/polymerase chain reaction has revealed higher levels of Jagged-1 expression by F-OST cells than by the F-RET population. Thus, two adjacent stroma cells (subendosteal and endosteal) play distinct roles in controlling the stem-cell capacity and fate of HSC and probably contribute distinctly to HSC niche formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bianco P, Robey PG (2000) Marrow stromal stem cells. J Clin Invest 105:1663–1668

    CAS  PubMed  Google Scholar 

  • Bianco P, Riminucci M, Kuznetsov S, Robey PG (1999) Multipotential cells in the bone marrow stroma: regulation in the context of organ physiology. Crit Rev Eukaryot Gene Expr 9:159–173

    CAS  PubMed  Google Scholar 

  • Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  Google Scholar 

  • Bryder D, Jacobsen SE (2000) Interleukin-3 supports expansion of long-term multilineage repopulating activity after multiple stem cell divisions in vitro. Blood 96:1748–1755

    CAS  PubMed  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  PubMed  Google Scholar 

  • Charbord P, Tavian M, Humeau L, Peault B (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87:4109–4119

    CAS  PubMed  Google Scholar 

  • Chen J, Astle CM, Harrison DE (1999) Development and aging of primitive hematopoietic stem cells in BALB/cBy mice. Exp Hematol 27:928–935

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Astle CM, Harrison DE (2003) Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol 31:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214

    Article  CAS  PubMed  Google Scholar 

  • Dexter TM, Testa NG (1976) Differentiation and proliferation of hemopoietic cells in culture. Methods Cell Biol 14:387–405

    CAS  PubMed  Google Scholar 

  • Fisher LW, Stubbs JT 3rd, Young MF (1995) Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins.Acta Orthop Scand (Suppl) 266:61–65

    CAS  Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  • Godin I, Cumano A (2002) The hare and the tortoise: an embryonic haematopoietic race. Nat Rev Immunol 2:593–604

    Google Scholar 

  • Gong JK (1978) Endosteal marrow: a rich source of hematopoietic stem cells. Science 199:1443–1445

    CAS  PubMed  Google Scholar 

  • Hermans MH, Hartsuiker H, Opstelten D (1989) An in situ study of B-lymphocytopoiesis in rat bone marrow. J Immunol 142:67–73

    Google Scholar 

  • Jamal HH, Aubin JE (1996) CD44 expression in fetal rat bone: in vivo and in vitro analysis. Exp Cell Res 223:467–477

    Article  CAS  PubMed  Google Scholar 

  • Jones P, May G, Healy L, Brown J, Hoyne G, Delassus S, Enver T (1998) Stromal expression of Jagged 1 promotes colony formation by fetal hematopoietic progenitor cells. Blood 92:1505–1511

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Laver JH, Kato T, Miyazaki H, Ogawa M (1996) Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or interleukin-3. Blood 88:429–436

    CAS  PubMed  Google Scholar 

  • Krenacs T, Rosendaal M (1998) Connexin43 gap junctions in normal, regenerating, and cultured mouse bone marrow and in human leukemias: their possible involvement in blood formation. Am J Pathol 152:993–1004

    CAS  PubMed  Google Scholar 

  • Lambertsen RH, Weiss L (1984) A model of intramedullary hematopoietic microenvironments based on stereologic study of the distribution of endocloned marrow colonies. Blood 63:287–297

    CAS  PubMed  Google Scholar 

  • Lomri A, Marie PJ, Tran PV, Hott M (1988) Characterization of endosteal osteoblastic cells isolated from mouse caudal vertebrae. Bone 9:165–175

    Article  CAS  PubMed  Google Scholar 

  • Marie PJ, Lomri A, Sabbagh A, Basle M (1989) Culture and behavior of osteoblastic cells isolated from normal trabecular bone surfaces. In Vitro Cell Dev Biol 25:373–380

    CAS  PubMed  Google Scholar 

  • Matsunaga T, Kato T, Miyazaki H, Ogawa M (1998) Thrombopoietin promotes the survival of murine hematopoietic long-term reconstituting cells: comparison with the effects of FLT3/FLK-2 ligand and interleukin-6. Blood 92:452–461

    CAS  PubMed  Google Scholar 

  • Modrowski D, Marie PJ (1993) Cells isolated from the endosteal bone surface of adult rats express differentiated osteoblastic characteristics in vitro. Cell Tissue Res 271:499–505

    CAS  PubMed  Google Scholar 

  • Nilsson SK, Hulspas R, Weier HU, Quesenberry PJ (1996) In situ detection of individual transplanted bone marrow cells using FISH on sections of paraffin-embedded whole murine femurs. J Histochem Cytochem 44:1069–1074

    CAS  PubMed  Google Scholar 

  • Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97:2293–2299

    Article  CAS  PubMed  Google Scholar 

  • Osmond DG (1990) B cell development in the bone marrow. Semin Immunol 2:173–180

    CAS  PubMed  Google Scholar 

  • Osmond DG, Jacobsen K, Park YH, Lamontagne L (1988) In vivo localization of B lymphocyte progenitor cells in mouse bone marrow. Adv Exp Med Biol 237:45–51

    CAS  PubMed  Google Scholar 

  • Pereira RM, Delany AM, Durant D, Canalis E (2002) Cortisol regulates the expression of Notch in osteoblasts. J Cell Biochem 85:252–258

    Article  CAS  PubMed  Google Scholar 

  • Riminucci M, Corsi A, Peris K, Fisher LW, Chimenti S, Bianco P (2003) Coexpression of bone sialoprotein (BSP) and the pivotal transcriptional regulator of osteogenesis, Cbfa1/Runx2, in malignant melanoma. Calcif Tissue Int 73:281–289

    Article  CAS  PubMed  Google Scholar 

  • Robey PG, Termine JD (1985) Human bone cells in vitro. Calcif Tissue Int 37:453–460

    CAS  PubMed  Google Scholar 

  • Sakaguchi Y, Sekiya I, Yagishita K, Ichinose S, Shinomiya K, Muneta T (2004) Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood 104:2728–2735

    Article  PubMed  Google Scholar 

  • Sharrock WJ (1998) Bone and the hematopoietic and immune systems: a report of the proceedings of a scientific workshop. J Bone Miner Res 13:537–543

    CAS  PubMed  Google Scholar 

  • Song L, Tuan RS (2004) Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J 18:980–982

    CAS  PubMed  Google Scholar 

  • Spangrude GJ, Smith L, Uchida N, Ikuta K, Heimfeld S, Friedman J, Weissman IL (1991) Mouse hematopoietic stem cells. Blood 78:1395–1402

    CAS  PubMed  Google Scholar 

  • Taichman RS, Emerson SG (1998) The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16:7–15

    CAS  PubMed  Google Scholar 

  • Taichman RS, Reilly MJ, Emerson SG (1996) Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87:518–524

    CAS  PubMed  Google Scholar 

  • Taichman R, Reilly M, Verma R, Ehrenman K, Emerson S (2001) Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol 112:438–448

    CAS  PubMed  Google Scholar 

  • Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20:707–718

    Google Scholar 

  • Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H, Hozack WJ, Manner PA, Danielson KG, Tuan RS (2003) Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 21:681–693

    CAS  Google Scholar 

  • Varnum-Finney B, Purton LE, Yu M, Brashem-Stein C, Flowers D, Staats S, Moore KA, Le Roux I, Mann R, Gray G, Artavanis-Tsakonas S, Bernstein ID (1998) The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 91:4084–4091

    CAS  PubMed  Google Scholar 

  • Visnjic D, Kalajzic I, Gronowicz G, Aguila HL, Clark SH, Lichtler AC, Rowe DW (2001) Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J Bone Miner Res 16:2222–2231

    CAS  PubMed  Google Scholar 

  • Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103:3258–3264

    Article  CAS  PubMed  Google Scholar 

  • Yee JA (1983) Properties of osteoblast-like cells isolated from the cortical endosteal bone surface of adult rabbits. Calcif Tissue Int 35:571–577

    CAS  PubMed  Google Scholar 

  • Yonemura Y, Ku H, Lyman SD, Ogawa M (1997) In vitro expansion of hematopoietic progenitors and maintenance of stem cells: comparison between FLT3/FLK-2 ligand and KIT ligand. Blood 89:1915–1921

    CAS  PubMed  Google Scholar 

  • Yoshimoto T, Shinohara T, Heike T, Shiota M, Kanatu-Shinohara M, Nakahata T (2003) Direct visualization of transplanted hematopoietic cell reconstitution in intact mouse organs indicates the presence of a niche. Exp Hematol 31:733–740

    Article  PubMed  Google Scholar 

  • Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marcia Soares Sader for her kind support with the scanning electron microscopy and Dr. Maria Isabel Doria Rossi for her expertise and contributions during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Borojevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balduino, A., Hurtado, S.P., Frazão, P. et al. Bone marrow subendosteal microenvironment harbours functionally distinct haemosupportive stromal cell populations. Cell Tissue Res 319, 255–266 (2005). https://doi.org/10.1007/s00441-004-1006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-1006-3

Keywords

Navigation