Skip to main content
Log in

Circulating Fibroblast Growth Factor-23 Increases Following Intermittent Parathyroid Hormone (1–34) in Postmenopausal Osteoporosis: Association with Biomarker of Bone Formation

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Uncertainties exist regarding whether FGF-23 production is influenced by PTH and its involvement in bone formation. We evaluated FGF-23 response and its relation to changes in biomarkers of bone formation following intermittent PTH treatment. Twenty-seven women with a mean [SD] age of 75.8 [5.4] years with postmenopausal osteoporosis were treated with PTH(1–34) for 18 months. Bone mineral density (BMD) was measured at 6 and 18 months at the lumbar spine (LS) and total hip (TH). Blood samples were obtained at baseline, 1–3, 6–9, and 12–18 months. Serum calcium, phosphate, PTH, 25(OH)vitamin D, 1,25(OH)2vitamin D, markers of bone turnover, FGF-23, and sclerostin were measured. BMD increased at both the LS (11.6%, P < 0.001) and TH (2.5%, P < 0.01). The bone formation marker P1NP increased early (baseline mean [SD] 39.9 [24.4] μg/l, 1–3 months 88 [37.9] μg/l; P < 0.001) and remained higher than baseline throughout 18 months. FGF-23 also increased, with a peak response at 6–9 months (increase 65%, P = 0.002). Serum phosphate remained stable. A significant increase in 1.25(OH)2vitamin D (P = 0.02) was seen at 1–3 months only. A small but significant reduction in sclerostin was seen at 6–9 (P = 0.02) and 12–18 months (P = 0.06). There was a positive correlation between changes in P1NP and FGF-23 (6–9 months r = 0.78, P < 0.001). FGF-23 is increased by intermittent PTH(1–34). This is related to early changes in P1NP, suggesting that the skeletal effects of PTH may involve FGF-23. Further studies are required to elucidate this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Consortium ADHR (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF-23. Nat Genet 26:345–348

    Article  Google Scholar 

  2. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Tamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphataemia. N Engl J Med 348:1656–1663

    Article  CAS  PubMed  Google Scholar 

  3. Juppner H (2007) Novel regulators of phosphate homeostasis and bone metabolism. Ther Apher Dial 11(Suppl 1):S3–S22

    Article  CAS  PubMed  Google Scholar 

  4. Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, Ogata E, Segawa H, Miyamoto K, Fukushima N (2005) Circulating FGF-23 is regulated by 1alpha, 25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 280:2543–2549

    Article  CAS  PubMed  Google Scholar 

  5. Ito M, Sakai Y, Furumoto M, Segawa H, Haito S, Yamanaka S, Nakamura R, Kuwahata M, Miyamoto KI (2005) Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells. Am J Physiol Endocrinol Metab 288:E1101–E1109

    Article  CAS  PubMed  Google Scholar 

  6. Collins MT, Linsaay JR, Jain A, Kelly MH, Cutler CM, Weinstein LS, Liu J, Fedarko NS, Winer KK (2005) Fibroblast growth factor-23 is regulated by 1alpha, 25-dihydroxyvitamin D. J Bone Miner Res 20:1944–1950

    Article  CAS  PubMed  Google Scholar 

  7. Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, JSl Finkelstein (2006) Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 21:1187–1196

    Article  CAS  PubMed  Google Scholar 

  8. Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M (2009) Fgf-23 decreases renal Na Pi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 297:F282–F291

    Article  CAS  PubMed  Google Scholar 

  9. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, Quarles LD (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17:1305–1315

    Article  CAS  PubMed  Google Scholar 

  10. Kawata T, Imanishi Y, Kobayashi K, Miki T, Arnold A, Inaba M, Nishizawa Y (2007) Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 18:2683–2688

    Article  CAS  PubMed  Google Scholar 

  11. Tebben PJ, Singh RJ, Clarke BL, Kumar R (2004) Fibroblast growth factor 23, parathyroid hormone, and 1alpha, 25-dIhydroxyvitamin D in surgically treated primary hyperparathyroidism. Mayo Clin Proc 79:1508–1513

    Article  CAS  PubMed  Google Scholar 

  12. Sato T, Tominaga Y, Ueki T, Goto N, Matsuoka S, Katayama A, Haba T, Uchida K, Nakanishi S, Kazama JJ, Gejyo F, Yamashita T, Fukagawa M (2004) Total parathyroidectomy reduces elevated circulating fibroblast growth factor 23 in advanced secondary hyperparathyroidism. Am J Kidney Dis 44:481–487

    CAS  PubMed  Google Scholar 

  13. Nakanishi S, Kazama JJ, Nii-Kono T, Omori K, Yamashita T, Fukumoto S, Gejyo F, Shigematsu T, Fukagawa M (2005) Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients. Kidney Int 67:1171–1178

    Article  CAS  PubMed  Google Scholar 

  14. Urena Torres P, Friedlander G, de Vernejoul MC, Silve C, Prie D (2008) Bone mass does not correlate with the serum fibroblast growth factor 23 in hemodialysis patients. Kidney Int 73:102–107

    Article  CAS  PubMed  Google Scholar 

  15. Pereira RC, Juppner H, Azucena-Serrano CE, Yadin O, Salusky IB, Wesseling-Perry K (2009) Patterns of FGF-23, DMP1 and MEPE expression in patients with chronic kidney disease. Bone. doi:10.1016/j.bone.2009.08.008

  16. Daji F, Shiizaki K, Shimada S, Okada T, Kunimoto K, Sakaguchi T, Hatamura I, Shigematsu T (2009) Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron 111:61–68

    Article  Google Scholar 

  17. Marsell R, Grundberg E, Krajisnik T, Mallmin H, Karlsson M, Mellstrom D, Orwoll E, Ohlsson C, Jonsson KB, Ljunggren O, Larsson TE (2008) Fibroblast growth factor-23 is associated with parathyroid hormone and renal function in a population-based cohort of elderly men. Eur J Endocrinol 158:125–129

    Article  CAS  PubMed  Google Scholar 

  18. Hasegawa H, Shimada T, Yamazaki Y (2004) Parathyroid-dependent and -independent mechanism to elevate serum concentration of FGF-23. J. Am Soc Nephrol 15:267A

    Google Scholar 

  19. Burnett-Bowie SM, Henao MP, Dere ME, Alaee H, Leder BZ (2009) Effects of hPTH(1–34) infusion on circulating serum phosphate, 1, 25-dihydroxyvitamin D and FGF23 levels in healthy men. J Bone Miner Res 24:1681–1685

    Article  PubMed  Google Scholar 

  20. Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, Kozai K, Tanne K, Aubin JE, Maeda N (2007) Mineralized tissue cells are a principal source of FGF23. Bone 40:1565–1573

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N (2008) Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 23:939–948

    Article  CAS  PubMed  Google Scholar 

  22. Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schuler C, Erben RG, Lanske B (2008) Genetic evidence of serum phosphate-independent functions of fgf-23 on bone. PLOS Genet 4:e10000154

    Article  Google Scholar 

  23. Wesseling-Perry K, Pereira RC, Wang H, Elashoff RM, Sahney S, Gales B, Jüppner H, Salusky IB (2009) Relationship between plasma FGF-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Metab 94:511–517

    Article  CAS  PubMed  Google Scholar 

  24. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in post-menopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  25. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446

    Article  CAS  PubMed  Google Scholar 

  26. Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37:148–158

    Article  CAS  PubMed  Google Scholar 

  27. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC, Jilka RL (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577–4583

    Article  CAS  PubMed  Google Scholar 

  28. O’Brien CA, Plotkin LI, Galli C, Goellner JJ, Gortazar AR, Allen MR, Robling AG, Bouxsein M, Schipani E, Turner CH, Jilka RL, Weinstein RS, Manolagas SC, Bellido T (2008) Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS ONE 3:e2942

    Article  PubMed  Google Scholar 

  29. Archibald G, Bartlett W, Brown A, Christie B, Elliott A, Griffith K, Pound S, Rappaport I, Robertson D, Semple Y, Slane P, Whitworth C, Williams B (2007) UK consensus conference on early chronic kidney disease–6 and 7. Nephrol Dial Transplant 22:2455–2457

    Article  CAS  PubMed  Google Scholar 

  30. Joseph F, Ahmad AM, Ul-Haq M, Durham BH, Whittingham P, Fraser WD, Vora JP (2008) Effects of growth hormone administration on bone mineral metabolism, PTH sensitivity and PTH secretory rhythm in postmenopausal women with established osteoporosis. J Bone Miner Res 23:721–729

    Article  CAS  PubMed  Google Scholar 

  31. Chen P, Miller PD, Delmas PD, Misurki DA, Krege JH (2006) Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis. J Bone Miner Res 21:1785–1790

    Article  CAS  PubMed  Google Scholar 

  32. Miller PD, Delmas PD, Lindsay R, Watts NB, Luckey M, Adachi J, Saag K, Greenspan SL, Seeman E, Boonen S, Meeves S, Lang TF, Bilezikian JP (2008) Early responsiveness of women with osteoporosis to teriparatide after therapy with alendronate or risedronate. J Clin Endocrinol Metab 93:3785–3793

    Article  CAS  PubMed  Google Scholar 

  33. Russell RGG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19:733–759

    Article  CAS  PubMed  Google Scholar 

  34. Keel C, Kraenzlin ME, Kraenzlin CA, Muller B, Meier C (2010) Impact of bisphosphonate wash-out prior to teriparatide therapy in clinical practice. J Bone Miner Metab 28:68–76

    Article  CAS  PubMed  Google Scholar 

  35. Eastell R, Arnold A, Brandi ML, Brown EM, D’Amour P, Hanley DA, Sudhaker Rao D, Rubin MR, Goltzman D, Silverberg SJ, Marx SJ, Peacock M, Mosekilde L, Bouillon R, Lewiecki EM (2009) Diagnosis of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop. J Clin Endocrinol Metab 94:340–350

    Article  CAS  PubMed  Google Scholar 

  36. Durham BH, Joseph F, Bailey LM, Fraser WD (2007) The association of circulating ferritin with serum concentrations of fibroblast growth factor-23 measured by 3 commercial assays. Ann Clin Biochem 44:463–466

    Article  CAS  PubMed  Google Scholar 

  37. Bergwitz C, Juppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D and FGF-23. Annu Rev Med 61:91–104

    Article  CAS  PubMed  Google Scholar 

  38. Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, Waguespack S, Gupta A, Hannon T, Econs MJ, Bianco P, Gehron Robey O (2003) FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 112:683–692

    CAS  PubMed  Google Scholar 

  39. Rhee Y, Farrow E, Lee R, Bivi N, Lazcano V, Plotkin L, White K, Bellido T (2009) FGF23 expression is upregulated by PTH receptor activation in osteocytes in vitro and in vivo: a parathyroid-bone link influencing the endocrine function of osteocytes. J Bone Miner Res 24 (suppl 1). http://www.asbmr.org/ Meetings/Annual meeting/A09001860 (accessed March 6, 2010)

  40. Brown WW, Juppner H, Langman CB, Price H, Farrow EG, White KE, Mc Cormick KL (2008) Hypophosphatemia with elevations in FGF-23 in a child with Jansen’s metaphyseal chondrodysplasia. J Clin Endocrinol Metab 94:17–20

    Article  PubMed  Google Scholar 

  41. Walton RJ, Russell RG, Smith R (1975) Changes in the renal and extrarenal handling of phosphate induced by disodium etidronate (EHDP) in man. Clin Sci Mol Med 49:45–56

    CAS  PubMed  Google Scholar 

  42. Bonjour JP, Troehler U, Preston C, Fleisch H (1978) Parathyroid hormone and renal handling of Pi: effect of dietary Pi and diphosphonates. Am J Physiol Renal Physiol 234:F497–F505

    CAS  Google Scholar 

  43. Wesseling-Perry K, Harkins GC, Wang H, Elashoff R, Gales B, Horwitz MJ, Stewart AF, Juppner H, Salusky IB (2010) The calcemic response to continuous parathyroid hormone (PTH) (1–34) infusion in end-stage kidney disease varies according to bone turnover: a potential role for PTH (7–84). J Clin Endocrinol Metab 95:2772–2780

    Article  CAS  PubMed  Google Scholar 

  44. Samadfam R, Richard C, Nguyen-Yamamoto L, Bolivar I, Goltzman D (2009) Bone formation regulates circulating concentrations of fibroblast growth factor 23. Endocrinology 150:4835–4845

    Article  CAS  PubMed  Google Scholar 

  45. Bellido T (2006) Downregulation of SOST/Sclerostin by PTH: a novel mechanism of hormonal control of bone formation mediated by osteocytes. J Musculoskelet Neuronal Interact 6:358–359

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hampson.

Additional information

W D Fraser has received lecture fees and educational grant funding from Eli Lilly and Company. All other authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridharan, M., Cheung, J., Moore, A.E. et al. Circulating Fibroblast Growth Factor-23 Increases Following Intermittent Parathyroid Hormone (1–34) in Postmenopausal Osteoporosis: Association with Biomarker of Bone Formation. Calcif Tissue Int 87, 398–405 (2010). https://doi.org/10.1007/s00223-010-9414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9414-8

Keywords

Navigation