Skip to main content
  • 796 Accesses

Abstract

Intermittently administered parathyroid hormone (PTH) promotes bone formation in both human and animal studies. By varying the duration of exposure, PTH can modulate genes leading to increased bone formation. The osteogenic mechanisms involved include the stimulation of osteoprogenitor cells, osteoblasts, and osteocytes, leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signaling, increased stem-cell mobilization, and mediation of the RANKL/OPG pathway. Daily administration of human recombinant PTH(1-34) (teriparatide) increases activation frequency, and modeling and remodeling-based bone formation. In postmenopausal women, daily teriparatide increases bone mineral density and decreases vertebral fractures by 65%, and non-vertebral fragility fractures by 53% compared with placebo. Evidence from an individual patient-level data meta-analysis, which included 8644 patients, revealed a reduction of 56% in hip fractures compared with controls. Teriparatide decreased the risk of new vertebral and clinical fractures by 56% and 52%, respectively, compared to risedronate in women with severe osteoporosis. Treatment with teriparatide is associated with minor adverse effects, including hypercalcemia, nausea, dizziness, headache, leg cramps, and arthralgia. Candidates for teriparatide treatment are women and men at high risk of future osteoporosis-related fractures, including those with recent, severe, or multiple vertebral fractures, and other osteoporosis-related fractures with low bone mineral density.

The present invited review was completed and submitted to the publisher on 19-Nov-19. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aBMD:

Areal bone mineral density

AR:

Anti-resorptives

b-ALP:

Bone-specific alkaline phosphatase

BMD:

Bone mineral density

BMPs:

Bone morphogenic proteins

BMUs:

Bone multicellular units

cAMP:

Cyclic-adenosine monophosphate

CTX-I:

C-terminal cross-linking telopeptide of type I collagen

DNA:

Deoxyribonucleic acid

DXA:

Dual-energy X-ray absorptiometry

EuroFORS:

European Forsteo Study

FEA:

Finite elements analysis

FPT:

Fracture Prevention Trial

FTIRI:

Fourier transform infrared imaging

hPTH:

Human parathyroid hormone

HR-QCT:

High resolution quantitative computerized tomography

IGF-1:

Insulin-like growth factor type 1

IGF-2:

Insulin-like growth factor type 2

MS/BS%:

Mineralizing surface %

PICP:

Procollagen type I carboxy-terminal propeptide

PINP:

Procollagen type I amino-terminal propeptide

PKA:

Protein kinase A

PKC:

Protein kinase C

PTH:

Parathyroid hormone

PTH1R:

PTH/PTH-related peptide receptor

QCT:

Quantitative computerized tomography

RANKL:

Receptor activator of nuclear factor kappa-Β ligand

RUNX2:

Runt-related transcription factor 2

TNF-ß:

Tumor necrosis factor-ß

vBMD:

Volumetric bone mineral density

VERO:

Vertebral fracture treatment comparisons in osteoporotic women

μCT:

Microcomputed tomography

References

  1. Bauer W, Aub JC, Albright F. Studies of calcium and phosphorus metabolism: a study of bone trabeculae as readily available reserve supply of calcium. J Exp Med. 1929;49:145–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Selye H. On the stimulation of new bone formation with parathyroid extract and irradiated ergosterol. Endocrinology. 1932;16:547–58.

    CAS  Google Scholar 

  3. Reeve J, Meunier PJ, Parsons JA, et al. Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Br Med J. 1980;280:1340–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Potts J. Parathyroid hormone: past and present. J Endocrinol. 2005;187:311–25.

    CAS  PubMed  Google Scholar 

  5. Hodsman AB, Fraher LJ, Ostbye T, et al. An evaluation of several biochemical markers for bone formation and resorption in a protocol utilizing cyclical parathyroid hormone and calcitonin therapy for osteoporosis. J Clin Invest. 1993;91:1138–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lindsay R, Nieves J, Formica C, et al. Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet. 1997;350:550–5.

    CAS  PubMed  Google Scholar 

  7. Dempster DW, Cosman F, Kurland ES, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16:1846–53.

    CAS  PubMed  Google Scholar 

  8. Dobnig H, Turner RT. The effects of programmed administration of human parathyroid hormone fragment (1–34) on bone histomorphometry and serum chemistry in rats. Endocrinology. 138:4607–12.

    Google Scholar 

  9. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    CAS  PubMed  Google Scholar 

  10. Orwoll ES, Scheele WH, Paul S, et al. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003;18:9–17.

    CAS  PubMed  Google Scholar 

  11. Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357:2028–39.

    CAS  PubMed  Google Scholar 

  12. Nakamura T, Sugimoto T, Nakano T, et al. Randomized teriparatide [human parathyroid hormone (PTH) 1–34] once-weekly efficacy research (TOWER) trial for examining the reduction in new vertebral fractures in subjects with primary osteoporosis and high fracture risk. J Clin Endocrinol Metab. 2012;97:3097–106.

    CAS  PubMed  Google Scholar 

  13. Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25:404–14.

    CAS  PubMed  Google Scholar 

  14. Bhandari M, Jin L, See K, et al. Does teriparatide improve femoral neck fracture healing: results from a randomized placebo-controlled trial. Clin Orthop Relat Res. 2016;474:1234–44.

    PubMed  PubMed Central  Google Scholar 

  15. McSheehy PM, Chambers TJ. Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology. 1986;118:824–8.

    CAS  PubMed  Google Scholar 

  16. Terauchi M, Li JY, Bedi B, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 2009;10:229–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McCauley LK, Koh AJ, Beecher CA, et al. Proto-oncogene c-fos is transcriptionally regulated by parathyroid hormone (PTH) and PTH-related protein in a cyclic adenosine monophosphate-dependent manner in osteoblastic cells. Endocrinology. 1997;138:5427–33.

    CAS  PubMed  Google Scholar 

  18. Nobta M, Tsukazaki T, Shibata Y, et al. Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by Delta1/Jagged1-activated Notch1 signaling. J Biol Chem. 2005;280:15842–8.

    CAS  Google Scholar 

  19. Gesty-Palmer D, Flannery P, Yuan L, et al. A beta-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Transl Med. 2009;1:1ra1. https://doi.org/10.1126/scitranslmed.3000071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kulkarni NH, Halladay DL, Miles RR, et al. Effects of parathyroid hormone on Wnt signaling pathway in bone. J Cell Biochem. 2005;95:1178–90.

    CAS  PubMed  Google Scholar 

  21. Saini V, Marengi DA, Barry KJ, et al. Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem. 2013;288:20122–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Drake MT, Srinivasan B, Modder UI, et al. Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab. 2010;95:5056–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Onyia JE, Helvering LM, Gelbert L, et al. Molecular profile of catabolic versus anabolic treatment regimens of parathyroid hormone (PTH) in rat bone: an analysis by DNA microarray. J Cell Biochem. 2005;95:403–18.

    CAS  PubMed  Google Scholar 

  24. Krishnan V, Moore TL, Ma YL, et al. Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling. Mol Endocrinol. 2003;17:423–35.

    CAS  PubMed  Google Scholar 

  25. Hisa I, Inoue Y, Hendy GN, et al. Parathyroid hormone- responsive Smad3-related factor, Tmem119, promotes osteoblast differentiation and interacts with the bone morphogenetic protein–Runx2 pathway. J Biol Chem. 2011;286:9787–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu B, Zhao X, Yang C, et al. Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J Bone Miner Res. 2012;27:2001–14.

    CAS  PubMed  Google Scholar 

  27. Casado-Díaz A, Dorado G, Giner M, et al. Proof of concept on functionality improvement of mesenchymal stem-cells in postmenopausal osteoporotic women treated with teriparatide (PTH1-34) after suffering atypical fractures. Calcif Tissue Int. 2019;104:631–40.

    PubMed  Google Scholar 

  28. Wang BL, Dai CL, Quan JX, et al. Parathyroid hormone regulates osterix and Runx2 mRNA expression predominantly through protein kinase a signaling osteoblast-like cells. J Endocrinol Investig. 2006;29:101–8.

    CAS  Google Scholar 

  29. Bellido T, Ali AA, Plotkin LI, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem. 2003;278:50259–72.

    CAS  PubMed  Google Scholar 

  30. Kim SW, Pajevic PD, Selig M, et al. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J Bone Miner Res. 2012;27:2075–84.

    CAS  PubMed  Google Scholar 

  31. Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007;40:1434–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hodsman AB, Steer B. Early histomorphometric changes in response to parathyroid hormone in osteoporosis: evidence for de novo bone formation on quiescent surfaces. Bone. 1993;14:523–7.

    CAS  PubMed  Google Scholar 

  33. Lindsay R, Cosman F, Zhou H, et al. A novel tetracycline labeling schedule for longitudinal evaluation of the short- term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide. J Bone Miner Res. 2006;21:366–73.

    CAS  PubMed  Google Scholar 

  34. Ma YL, Zeng O, Donley DW, et al. Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF- II immunoreactivity in postmenopausal women with osteoporosis. J Bone Miner Res. 2006;21:855–64.

    CAS  PubMed  Google Scholar 

  35. Dempster DW, Zhou H, Recker RR, et al. Remodeling- and modeling-based bone formation with teriparatide versus denosumab: a longitudinal analysis from baseline to 3 months in the AVA study. J Bone Miner Res. 2018;33:298–306.

    CAS  PubMed  Google Scholar 

  36. Dempster DW, Zhou H, Ruff VA, et al. Longitudinal effects of teriparatide or zoledronic acid on bone modeling- and remodeling-based formation in the SHOTZ study. J Bone Miner Res. 2018;33:627–33.

    CAS  PubMed  Google Scholar 

  37. Hodsman AB, Kisiel M, Adachi JD, et al. Histomorphometric evidence for increased bone turnover without change in cortical thickness or porosity after 2 years of cyclical hPTH(1-34) therapy in women with severe osteoporosis. Bone. 2000;27:311–8.

    CAS  PubMed  Google Scholar 

  38. Jiang Y, Zhao JJ, Mitlak BH, et al. Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res. 2003;18:1932–41.

    CAS  PubMed  Google Scholar 

  39. Stepan JJ, Burr DB, Li J, et al. Histomorphometric changes by teriparatide in alendronate-pretreated women with osteoporosis. Osteoporos Int. 2010;21:2027–36.

    CAS  PubMed  Google Scholar 

  40. Ma YL, Zeng QQ, Chiang AY, et al. Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone. 2014;59:139–47.

    CAS  PubMed  Google Scholar 

  41. Dempster DW, Zhou H, Recker RR, et al. A longitudinal study of skeletal histomorphometry at 6 and 24 months across four bone envelopes in postmenopausal women with osteoporosis receiving teriparatide or zoledronic acid in the SHOTZ trial. J Bone Miner Res. 2016;31:1429–39.

    CAS  PubMed  Google Scholar 

  42. Ma YL, Marin F, Stepan J, et al. Comparative effects of teriparatide and strontium ranelate in the periosteum of iliac crest biopsies in postmenopausal women with osteoporosis. Bone. 2011;48:972–8.

    CAS  PubMed  Google Scholar 

  43. Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int. 2002;13:97–104.

    CAS  PubMed  Google Scholar 

  44. Fahrleitner-Pammer A, Burr D, Dobnig H, et al. Improvement of cancellous bone microstructure in patients on teriparatide following alendronate pretreatment. Bone. 2016;89:16–24.

    CAS  PubMed  Google Scholar 

  45. Burr DB, Hirano T, Turner CH, et al. Intermittently administered human parathyroid hormone(1–34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res. 2001;16:157–65.

    CAS  PubMed  Google Scholar 

  46. Sato M, Westmore M, Ma YL, et al. Teriparatide [PTH(1-34)] strengthens the proximal femur of ovariectomized nonhuman primates despite increasing porosity. J Bone Miner Res. 2004;19:623–9.

    CAS  PubMed  Google Scholar 

  47. Mashiba T, Burr DB, Turner CH, Sato M, Cain RL, Hock JM. Effects of human parathyroid hormone (1–34), LY333334, on bone mass, remodeling, and mechanical properties of cortical bone during the first remodeling cycle in rabbits. Bone. 2001;28:538–47.

    CAS  PubMed  Google Scholar 

  48. Dobnig H, Stepan JJ, Burr DB, et al. Teriparatide reduces bone microdamage accumulation in postmenopausal women previously treated with alendronate. J Bone Miner Res. 2009;24:1998–2006.

    CAS  PubMed  Google Scholar 

  49. Cosman F, Dempster DW, Nieves JW, et al. Effect of teriparatide on bone formation in the human femoral neck. J Clin Endocrinol Metab. 2016;101:1498–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chappard D, Baslé MF, Legrand E. At al. New laboratory tools in the assessment of bone quality. Osteoporos Int. 2011;22:2225–40.

    CAS  PubMed  Google Scholar 

  51. Misof BM, Roschger P, Cosman F, et al. Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab. 2003;88:1150–6.

    CAS  PubMed  Google Scholar 

  52. Paschalis EP, Glass EV, Donley DW, et al. Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab. 2005;90:4644–9.

    CAS  PubMed  Google Scholar 

  53. Dempster DW, Roschger P, Misof BM, et al. Differential effects of teriparatide and zoledronic acid on bone mineralization density distribution at 6 and 24 months in the SHOTZ study. J Bone Miner Res. 2016;31:1527–35.

    CAS  PubMed  Google Scholar 

  54. Misof BM, Paschalis E, Blouin S, et al. Effects of 1 year of daily teriparatide treatment on iliacal bone mineralization density distribution (BMDD) in postmenopausal osteoporotic women previously treated with alendronate or risedronate. J Bone Miner Res. 2010;25:2297–303.

    CAS  PubMed  Google Scholar 

  55. Hofstetter B, Gamsjaeger S, Varga F, et al. Bone quality of the newest bone formed after two years of teriparatide therapy in patients who were previously treatment-naive or on long-term alendronate therapy. Osteoporos Int. 2014;25:2709–19.

    CAS  PubMed  Google Scholar 

  56. Boonen S, Marin F, Obermayer-Pietsch B, et al. Effects of prior antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2008;93:852–60.

    CAS  PubMed  Google Scholar 

  57. Tsai JN, Nishiyama KK, Yuan A, et al. Effects of denosumab and teriparatide transitions on bone microarchitecture and estimated strength: the DATA-switch HR-pQCT study. J Bone Miner Res. 2017;32:2001–9. Erratum (15 April 2019): https://onlinelibrary.wiley.com/doi/10.1002/jbmr.3707

    CAS  PubMed  Google Scholar 

  58. Paschalis EP, Krege JH, Gamsjaeger S, et al. Teriparatide treatment increases mineral content and volume in cortical and trabecular bone of iliac crest: a comparison of infrared imaging with X-ray–based bone assessment techniques. J Bone Miner Res. 2018;33:2230–5.

    CAS  PubMed  Google Scholar 

  59. Morris HA, Eastell R, Jorgensen NR, et al. Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin Chim Acta. 2017;467:34–41.

    CAS  PubMed  Google Scholar 

  60. Krege JH, Lane NE, Harris JM, et al. PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos Int. 2014;25:2159–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Eastell R, Krege JH, Chen P, et al. Development of an algorithm for using PINP to monitor treatment of patients with teriparatide. Curr Med Res Opin. 2006;22:61–6.

    CAS  PubMed  Google Scholar 

  62. Blumsohn A, Marin F, Nickelsen T, et al. Early changes in biochemical markers of bone turnover and their relationship with bone mineral density changes after 24 months of treatment with teriparatide. Osteoporos Int. 2011;22:1935–46.

    CAS  PubMed  Google Scholar 

  63. Arlot M, Meunier PJ, Boivin G, et al. Differential effects of teriparatide and alendronate on bone remodeling in postmenopausal women assessed by histomorphometric parameters. J Bone Miner Res. 2005;20:1244–53.

    CAS  PubMed  Google Scholar 

  64. Glover SJ, Eastell R, McCloskey EV, et al. Rapid and robust response of biochemical markers of bone formation to Teriparatide therapy. Bone. 2009;45:1053–8.

    CAS  PubMed  Google Scholar 

  65. Recker RR, Marin F, Ish-Shalom S, et al. Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res. 2009;24:1358–68.

    CAS  PubMed  Google Scholar 

  66. Saag KG, Zanchetta JR, Devogelaer JP, et al. Effects of Teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum. 2009;60:3346–55.

    CAS  PubMed  Google Scholar 

  67. Pazianas M. Anabolic effects of PTH and the ‘anabolic window’. Trends Endocrinol Metab. 2015;26:111–3.

    CAS  PubMed  Google Scholar 

  68. Leder BZ, Tsai JN, Uihlein AV, et al. Two years of denosumab and teriparatide administration in postmenopausal women with osteoporosis (the DATA extension study): a randomized controlled trial. J Clin Endocrinol Metab. 2014;99:1694–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen P, Satterwhite JH, Licata AA, et al. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res. 2005;20:962–70.

    CAS  PubMed  Google Scholar 

  70. Farahmand P, Marin F, Hawkins F, et al. Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos Int. 2013;24:2971–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Miller PD, Delmas PD, Lindsay R, et al. Early responsiveness of women with osteoporosis to teriparatide after therapy with alendronate or risedronate. J Clin Endocrinol Metab. 2008;93:3785–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Leder BZ, Tsai JN, Uihlein AV, et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-switch study): extension of a randomised controlled trial. Lancet. 2015;386:1147–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Burr DB. Does early PTH treatment compromise bone strength? The balance between remodeling, porosity, bone mineral, and bone size. Curr Osteoporos Rep. 2005;3:19–24.

    PubMed  Google Scholar 

  74. Seeman E. Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy. Bone. 2007;41:308–17.

    CAS  PubMed  Google Scholar 

  75. Chen P, Miller PD, Delmas PD, et al. Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis. J Bone Miner Res. 2006;21:1785–90.

    CAS  PubMed  Google Scholar 

  76. Graeff C, Chevalier Y, Charlebois M, et al. Improvements in vertebral body strength under Teriparatide treatment assessed in vivo by finite element analysis: results from the EUROFORS study. J Bone Miner Res. 2009;24:1672–80.

    CAS  PubMed  Google Scholar 

  77. Graeff C, Marin F, Petto H, et al. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone. 2013;52:568–77.

    CAS  PubMed  Google Scholar 

  78. Ettinger B, San Martin J, Crans G, et al. Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J Bone Miner Res. 2004;19:745–51.

    CAS  PubMed  Google Scholar 

  79. Obermayer-Pietsch BM, Marin F, McCloskey EV, et al. Effects of two years of daily teriparatide treatment on BMD in postmenopausal women with severe osteoporosis with and without prior antiresorptive treatment. J Bone Miner Res. 2008;23:1591–600.

    CAS  PubMed  Google Scholar 

  80. Lindsay R, Krege JH, Marin F, et al. Teriparatide for osteoporosis: importance of the full course. Osteoporos Int. 2016;27:2395–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Geusens P, Marin F, Kendler DL, et al. Effects of teriparatide compared with risedronate on the risk of fractures in subgroups of postmenopausal women with severe osteoporosis: the VERO trial. J Bone Miner Res. 2018;33:783–94.

    CAS  PubMed  Google Scholar 

  82. Poole KE, Treece GM, Ridgway GR, et al. Targeted regeneration of bone in the osteoporotic human femur. PLoS One. 2011;6:e16190.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Eriksen EF, Keaveny TM, Gallagher ER, et al. Literature review: the effects of teriparatide at the hip in patients with osteoporosis. Bone. 2014;67:246–56.

    CAS  PubMed  Google Scholar 

  84. Prevrhal S, Krege JH, Chen P, et al. Teriparatide vertebral fracture risk reduction determined by quantitative and qualitative radiographic assessment. Curr Med Res Opin. 2009;25:921–8.

    CAS  PubMed  Google Scholar 

  85. Lindsay R, Scheele WH, Neer R, et al. Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch Intern Med. 2004;164:2024–30.

    PubMed  Google Scholar 

  86. Prince R, Sipos A, Hossain A, et al. Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J Bone Miner Res. 2005;20:1507–13.

    CAS  PubMed  Google Scholar 

  87. Kendler DL, Marin F, Zerbini CAF, et al. Effects of teriparatide and risedronate on new fractures in postmenopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018;391:230–40.

    CAS  PubMed  Google Scholar 

  88. Hadji P, Zanchetta JR, Russo L, et al. The effect of teriparatide compared with risedronate on reduction of back pain in postmenopausal women with osteoporotic vertebral fractures. Osteoporos Int. 2012;23:2141–50.

    CAS  PubMed  Google Scholar 

  89. Diez-Perez A, Marin F, Eriksen EF, et al. Effects of teriparatide on hip and upper limb fractures in patients with osteoporosis: a systematic review and meta-analysis. Bone. 2019;120:1–8.

    CAS  PubMed  Google Scholar 

  90. Silverman S, Langdahl BL, Fujiwarac S, et al. Reduction of hip and other fracture rates in patients receiving teriparatide in real-world clinical practice: integrated analysis of four prospective observational studies. Calcif Tissue Int. 2019;104:193–200.

    CAS  PubMed  Google Scholar 

  91. Genant HK, Halse J, Briney WG, et al. The effects of teriparatide on the incidence of back pain in postmenopausal women with osteoporosis. Curr Med Res Opin. 2004;21:1027–34.

    Google Scholar 

  92. Miller PD, Bilezikian JP, Diaz-Curiel M, et al. Occurrence of hypercalciuria in patients with osteoporosis treated with teriparatide. J Clin Endocrinol Metab. 2007;92:3535–41.

    CAS  PubMed  Google Scholar 

  93. Cosman F, Dawson-Hughes B, Wan X, et al. Changes in vitamin D metabolites during teriparatide treatment. Bone. 2012;50:1368–71.

    CAS  PubMed  Google Scholar 

  94. Vahle JL, Sato M, Long GG, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone(1-34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30:312–21.

    CAS  PubMed  Google Scholar 

  95. Jolette J, Attalia B, Varela A, et al. Comparing the incidence of bone tumors in rats chronically exposed to the selective PTH type 1 receptor agonist abaloparatide or PTH(1-34). Regul Toxicol Pharmacol. 2017;86:356–65.

    CAS  PubMed  Google Scholar 

  96. Eriksen EK. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord. 2010;11:219–27.

    PubMed  PubMed Central  Google Scholar 

  97. Tashjian AH, Chabner BA. Commentary on clinical safety of recombinant human parathyroid hormone 1-34 in the treatment of osteoporosis in men and postmenopausal women. J Bone Miner Res. 2002;17:1151–61.

    CAS  PubMed  Google Scholar 

  98. Vahle JL, Long GG, Sandusky G, et al. Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol. 2004;32:426–38.

    CAS  PubMed  Google Scholar 

  99. Vahle JL, Zuehlke U, Schmidt A, et al. Lack of bone neoplasms and persistence of bone efficacy in cynomolgus macaques after long-term treatment with teriparatide [rhPTH(1–34)]. J Bone Miner Res. 2008;23:2033–9.

    CAS  PubMed  Google Scholar 

  100. Andrews EB, Gilsenan AW, Midkiff K, et al. The US post-marketing surveillance study of adult osteosarcoma and teriparatide: study design and findings from the first 7 years. J Bone Miner Res. 2012;27:2429–37.

    CAS  PubMed  Google Scholar 

  101. Gilsenan A, Harding A, Kellier-Steele N, et al. The Forteo patient registry linkage to multiple state cancer registries: study design and results from the first 8 years. Osteoporos Int. 2018;29:2335–43.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Venkatesh (Gary) Krishnan, Lilly Research Laboratories, for his critical review of the chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marin, F., Ma, Y.L. (2022). Teriparatide. In: Takahashi, H.E., Burr, D.B., Yamamoto, N. (eds) Osteoporotic Fracture and Systemic Skeletal Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-5613-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5613-2_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5612-5

  • Online ISBN: 978-981-16-5613-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics