Skip to main content
Log in

On mixing diffeomorphisms of the disc

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that a \(C^k\), \(k\ge 2\) pseudo-rotation f of the disc with non-Brjuno rotation number is \(C^{k-1}\)-rigid. The proof is based on two ingredients: (1) we derive from Franks’ Lemma on free discs that a pseudo-rotation with small rotation number compared to its \(C^1\) norm must be close to the identity map; (2) using Pesin theory, we obtain an effective finite information version of the Katok closing lemma for an area preserving surface diffeomorphism f, that provides a controlled gap in the possible growth of the derivatives of f between exponential and sub-exponential. Our result on rigidity, together with a KAM theorem by Rüssmann, allow to conclude that analytic pseudo-rotations of the disc or the sphere are never topologically mixing. Due to a structure theorem by Franks and Handel of zero entropy surface diffeomorphisms, it follows that an analytic conservative diffeomorphism of the disc or the sphere that is topologically mixing must have positive topological entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anosov, D .V., Katok, A .B.: New examples in smooth ergodic theory. Ergodic diffeomorphisms. Trans. Mosc. Math. Soc. 23, 1–35 (1970)

    MathSciNet  MATH  Google Scholar 

  2. Bramham, B.: Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves. Ann. Math. 181, 1033–1086 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bramham, B.: Pseudo-rotations with sufficiently Liouville rotation number are \(C^0\) rigid. Invent. Math. 199, 561–580 (2015)

    Article  MathSciNet  Google Scholar 

  4. Climenhaga, V., Pesin, Y.: Hadamard–Perron theorems and effective hyperbolicity. arXiv:1303.2375

  5. Crovisier, S.: Exotic rotations. Méthodes topologiques en dynamique des surfaces, Grenoble (2006). http://www.math.u-psud.fr/~crovisie/grenoble2006.pdf

  6. Franks, J.: Recurrence and fixed points of surface homeomorphisms. Ergod. Theory Dyn. Syst. 8, 99–107 (1988)

    Article  MathSciNet  Google Scholar 

  7. Franks, J.: Generalizations of the Poincaré–Birkhoff theorem. Ann. Math. 128, 139–151 (1988). Erratum in Ann. Math. 164, 1097–1098 (2006)

  8. Franks, J., Handel, M.: Entropy zero areas preserving diffeomorphisms of \({{\mathbb{S}}}^2\). Geom. Topol. 16(4), 2187–2284 (2012)

    Article  MathSciNet  Google Scholar 

  9. Fayad, B., Katok, A.: Constructions in elliptic dynamics. Ergod. Theory Dyn. Syst. (Herman Meml. Issue) 24, 1477–1520 (2004)

    Article  MathSciNet  Google Scholar 

  10. Fayad, B., Katok, A.: Analytic uniquely ergodic volume preserving maps on odd spheres. Commentarii Mathematici Helvetici. 89(4), 963–977 (2014)

    Article  MathSciNet  Google Scholar 

  11. Fayad, B., Krikorian, R.: Herman’s last geometric theorem. Ann. Sci. École Norm. Supér. 42, 193–219 (2009)

    Article  MathSciNet  Google Scholar 

  12. Fayad, B., Saprykina, M.: Weak mixing disc and annulus diffeomorphisms with arbitrary Liouvillean rotation number on the boundary. Ann. Sci. École Norm. Super. (4) 38(3), 339–364 (2005)

    Article  Google Scholar 

  13. Herman, M.: Some open problems in dynamical systems. In: Proceedings of the International Congress of Mathematicians, vol. II. Berlin (1998). Doc. Math. 1998 Extra vol. II, pp. 797–808 (1998)

  14. Katok, A.: Bernoulli diffeomorphisms on surfaces. Ann. Math. 110, 529–547 (1979)

    Article  MathSciNet  Google Scholar 

  15. Le Calvez, P.: A finite dimensional approach to Bramham’s approximation theorem. Ann. l’Inst. Fourier 66(5), 2169–2202 (2016)

    Article  MathSciNet  Google Scholar 

  16. Lind, D.A., Thouvenot, J.-P.: Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations. Math. Syst. Theory 11, 275–282 (1978)

    Article  MathSciNet  Google Scholar 

  17. Pliss, V.: On a conjecture of smale. Differ. Uravn. 8, 268–282 (1972)

    MathSciNet  MATH  Google Scholar 

  18. Polterovich, L., Sodin, M.: A growth gap for diffeomorphisms of the interval. J. Anal. Math. 92, 191–209 (2004)

    Article  MathSciNet  Google Scholar 

  19. Rüssmann, H.: Stability of elliptic fixed points of analytic area-preserving mappings under the Brjuno condition. Ergod. Theory Dyn. Syst. 22(5), 1551–1573 (2002)

    Article  Google Scholar 

  20. Yoccoz, J.-C.: Centralisateurs et conjugaison différentiable des difféomorphismes du cercle, Petits diviseurs en dimension 1. Astérisque 231, 89–242 (1995)

    Google Scholar 

  21. Yoccoz, J.-C.: Analytic linearization of circle diffeomorphisms. Dynamical systems and small divisors (Cetraro, 1998). In: Lecture Notes in Mathematics, vol. 1784, pp. 125–173 (2002)

Download references

Acknowledgements

We are very grateful to the referee for many valuable comments and suggestions on a first version of the manuscript, that allowed us to make sensitive improvements both in the content and in the presentation of our paper. Bassam Fayad was supported by ANR-15-CE40-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassam Fayad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 3.5

We denote the first and second coordinates of \(g_n\) as \(\bar{v},\bar{w}\). We expand \(g_n\) into linear terms and higher order terms at the origin. For each \((v,w) \in U_n\), we have

$$\begin{aligned} \bar{v}(v,w)= & {} A_nv+f_n(v,w) \end{aligned}$$
(4.1)
$$\begin{aligned} \bar{w}(v,w)= & {} B_nw+h_n(v,w) \end{aligned}$$
(4.2)

where \(\partial _{v}f_n(0,0)=\partial _{w}f_n(0,0)=\partial _{v}h_n(0,0)=\partial _{w}h_n(0,0)=0\). (\(f_n,h_n\) are uniquely determined by these conditions). Following the notations in Sect. 3.2, we have

$$\begin{aligned} A_n = e^{\lambda ^u_n}, B_n =e^{\lambda ^s_n} \end{aligned}$$

Recall that we have assumed \(\Vert Dg\Vert \le A\) and \(\Vert D^2g\Vert \le D\). By Lemma 3.6, we have the following lemmata which are essentially proved in [4].

Lemma 4.1

For all \(0 \le n \le L-1\) we have

$$\begin{aligned} \Vert D^2f_n\Vert , \Vert D^2h_n\Vert \le C_0D\beta _{n+1} \end{aligned}$$

As a consequence, for all \(0 \le n \le L-1\) we have

$$\begin{aligned} |\partial _vf_n(v,w)|,|\partial _wf_n(v,w)|,|\partial _vh_n(v,w)|,|\partial _wh_n(v,w)| \le C_0D\beta _{n+1} (|v| + |w|) \end{aligned}$$

Here \(C_0\) is a constant depending only on S and the norm is taken restricted to \(U_n\).

Denote \(\epsilon _n=2C_0D\beta _{n+1}r_n(1+\kappa _n)\), then we have the following estimate:

Lemma 4.2

For each \(0\le n \le L-1\), we have

$$\begin{aligned} \Vert \partial _v f_n\Vert _{C^0} \le \epsilon _n, \Vert \partial _wf_n\Vert _{C^0} \le \epsilon _n \\ \Vert \partial _v h_n\Vert _{C^0} \le \epsilon _n, \Vert \partial _w h_n\Vert _{C^0} \le \epsilon _n \end{aligned}$$

Here \(C^{0}\) norm is taken restricted to \(U_n\).

It is easy to see that

$$\begin{aligned} \epsilon _n = 2C_0D\beta _{n+1}r_n(1+\kappa _n)\le & {} 2C_0D\max (A^{2}c_n^{-1}, \frac{1}{100}) {\bar{\beta }} \bar{r} c_n^3(1+c_n^{-1}{\bar{\kappa }}) \\\le & {} 400C_0c_nDA^2{\bar{\beta }} \bar{r} \end{aligned}$$

Then by (3.31) and (3.32), we have

$$\begin{aligned} \epsilon _n\le & {} D^{-\frac{M}{2}}{\bar{\kappa }} \end{aligned}$$
(4.3)
$$\begin{aligned} \epsilon _n \kappa _n\le & {} D^{-M}{\bar{\kappa }} \end{aligned}$$
(4.4)
$$\begin{aligned} \epsilon _n {\tilde{\kappa }}_{n}\le & {} D^{-M}{\bar{\kappa }} \end{aligned}$$
(4.5)

when D is sufficiently large depending only on S.

Then by Lemma 4.1 and (4.1), for any \((v,w) \in U_n\) we have,

$$\begin{aligned} |\bar{v}|\ge & {} A_n|v| - |f_n(v,w)| \nonumber \\\ge & {} A_n|v| - \epsilon _n(|v| + |w|) \nonumber \\\ge & {} (A_n - \epsilon _n - \epsilon _n \kappa _n)|v| - \epsilon _n \tau _n \end{aligned}$$
(4.6)

and by (4.2)

$$\begin{aligned} |\bar{w}|\le & {} B_n|w| + |h_n(v,w)| \nonumber \\\le & {} B_n|w| + \epsilon _n(|v| + |w|) \nonumber \\\le & {} B_n(\tau _n + \kappa _n |v|) + \epsilon _n((1+\kappa _n)|v| + \tau _n) \nonumber \\\le & {} (B_n \kappa _n + \epsilon _n + \epsilon _n \kappa _n) |v| + B_n \tau _n + \epsilon _n \tau _n \end{aligned}$$
(4.7)

We will first show that:

$$\begin{aligned} g_n(U_n) \text{ is } \text{ contained } \text{ in } \text{ the } \text{ interior } \text{ of } U(\infty , \tau _{n+1}, \kappa _{n+1}) \end{aligned}$$
(4.8)

Combining (4.6) and (4.7), (4.8) follows from:

$$\begin{aligned} \kappa _{n+1}> & {} \frac{e^{\lambda _n^s} \kappa _n + \epsilon _n + \epsilon _n \kappa _n}{ e^{\lambda _n^u} - \epsilon _n - \epsilon _n \kappa _n } \end{aligned}$$
(4.9)
$$\begin{aligned} \tau _{n+1}> & {} (e^{\lambda _n^s} + \epsilon _n + \epsilon _n \frac{e^{\lambda _n^s} \kappa _n + \epsilon _n + \epsilon _n \kappa _n}{ e^{\lambda _n^u} - \epsilon _n - \epsilon _n \kappa _n }) \tau _n \end{aligned}$$
(4.10)

By (4.3), (4.4), then when D is sufficiently large we get (4.9) from

$$\begin{aligned} \frac{e^{\lambda _n^s} \kappa _n + \epsilon _n + \epsilon _n \kappa _n}{ e^{\lambda _n^u} - \epsilon _n - \epsilon _n \kappa _n }< & {} e^{-\lambda _n^u + \frac{1}{2}\delta }(e^{\lambda _n^s} \kappa _n + D^{-\frac{1}{4}M}{\bar{\kappa }}) \\\le & {} \max (e^{ - \lambda _n^u + \lambda _n^s + \delta } \kappa _n, \frac{1}{100}{\bar{\kappa }}) \\\le & {} \kappa _{n+1} \end{aligned}$$

Similarly, by (4.3),(4.4), (3.30), we have (4.10) when D is sufficiently large.

Now we get to the proof of (1) in Proposition 3.5. Differentiate (4.1) and (4.2), we get

$$\begin{aligned} \frac{d\bar{v}}{dv}= & {} A_n + \partial _v f_n(v,w) \end{aligned}$$
(4.11)
$$\begin{aligned} \frac{d\bar{v}}{dw}= & {} \partial _w f_n(v,w) \end{aligned}$$
(4.12)
$$\begin{aligned} \frac{d\bar{w}}{dv}= & {} \partial _v h_n(v,w) \end{aligned}$$
(4.13)
$$\begin{aligned} \frac{d\bar{w}}{dw}= & {} B_n + \partial _w h_n(v,w) \end{aligned}$$
(4.14)

Take any \((a,b) \in C_n\), \((v,w) \in U_n\), then

$$\begin{aligned} (Dg_{n})_{(v,w)}(a,b)= & {} (\bar{a}, \bar{b}) \end{aligned}$$

with

$$\begin{aligned} \bar{a}= & {} (A_n + \partial _v f_n(v,w)) a + \partial _w f_n(v,w) b \\ \bar{b}= & {} \partial _v h_n(v,w) a + (B_n + \partial _w h_n(v,w))b \end{aligned}$$

Since \(|b| \le \kappa _n|a|\), by Lemma 4.2 we have

$$\begin{aligned} |\bar{a} |\ge & {} (e^{\lambda _n^u } - \epsilon _n) |a| - \epsilon _n |b| \nonumber \\\ge & {} (e^{\lambda _n^u } - \epsilon _n - \epsilon _n\kappa _n) |a| \end{aligned}$$
(4.15)

and

$$\begin{aligned} |\bar{b}|\le & {} \epsilon _n a + (e^{\lambda _n^s} + \epsilon _n)b \nonumber \\\le & {} (\epsilon _n \kappa _n + e^{\lambda _n^s} \kappa _n + \epsilon _n) |a| \end{aligned}$$
(4.16)

Then we have

$$\begin{aligned} |\bar{b}| \le |\bar{a}|\frac{\epsilon _n \kappa _n + e^{\lambda _n^s} \kappa _n + \epsilon _n}{e^{\lambda _n^u } - \epsilon _n - \epsilon _n\kappa _n } \end{aligned}$$

Then by (4.9), we have that \((\bar{a}, \bar{b}) \in C_{n+1}\).

On the other hand, take any \( (\bar{a},\bar{b}) \in \tilde{C}_{n+1}, (v,w) \in g_n(U_n) \bigcap U_{n+1}\), denote \((a,b) = (Dg_n^{-1})_{(v,w)}(\bar{a}, \bar{b})\), by (4.15) and (4.16) we have

$$\begin{aligned} {\tilde{\kappa }}_{n+1}(\epsilon _n |a| + (e^{\lambda _n^s} + \epsilon _n)|b|) \ge {\tilde{\kappa }}_{n+1}|\bar{b}| \ge |\bar{a}| \ge (e^{\lambda _n^u } - \epsilon _n) |a| - \epsilon _n |b| \end{aligned}$$

hence

$$\begin{aligned} |a|\le & {} |b|\frac{{\tilde{\kappa }}_{n+1}(e^{\lambda _n^s}+ \epsilon _n) + \epsilon _n}{e^{\lambda _n^u} - \epsilon _n - {\tilde{\kappa }}_{n+1}\epsilon _n} \end{aligned}$$

In order to prove that \((a,b) \in \tilde{C}_n\), it is enough to verify that

$$\begin{aligned} \frac{{\tilde{\kappa }}_{n+1}(e^{\lambda _n^s}+ \epsilon _n) + \epsilon _n}{e^{\lambda _n^u} - \epsilon _n - {\tilde{\kappa }}_{n+1}\epsilon _n} \le {\tilde{\kappa }}_n \end{aligned}$$

that is

$$\begin{aligned} {\tilde{\kappa }}_{n+1} \le \frac{{\tilde{\kappa }}_n e^{\lambda _n^u }- \epsilon _n {\tilde{\kappa }}_n - \epsilon _n}{e^{\lambda _n^s} + \epsilon _n + \epsilon _n {\tilde{\kappa }}_n} \end{aligned}$$

when D is sufficiently large. This is proved in a similar way as (4.9) using (4.3), (4.5). This completes the proof of (1).

Now we prove (2) in Proposition 3.5. If \(\Gamma \) is \(\kappa _n\)-full horizontal graph of \(U_n\), we can denote \(\Gamma \) as the graph of \(\phi : [-r_n, r_n] \rightarrow {\mathbb {R}}\), such that:

  1. (1)

    The Lipschitz constant of \(\phi \) is smaller than \(\kappa _n\) everywhere;

  2. (2)

    For any \(v \in [-r_n, r_n]\), we have \((v,\phi (v)) \in U_n\).

By (4.11), we have for any \((v,w) \in U_{n}\)

$$\begin{aligned} \frac{d\bar{v}}{dv}(v,w)> & {} e^{\lambda _n^u} - \epsilon _n(|v| + |w|) \\\ge & {} e^{\lambda _n^u} - \epsilon _n(|v| + \kappa _n|v| + \tau _n) \\\ge & {} e^{\lambda _n^u} - \epsilon _n(r_n + \kappa _nr_n + \tau _n) \\> & {} 0 \end{aligned}$$

when D is sufficiently large. By (4.6), for any w such that \((r_n, w) \in U_n\), if D is sufficiently large then

$$\begin{aligned} \bar{v}(r_n, w)\ge & {} (A_n - \epsilon _n - \epsilon _n \kappa _n) r_n - \epsilon _n \tau _n\\> & {} e^{\lambda _n^u - \frac{1}{2}\delta } r_n > r_{n+1} \end{aligned}$$

Here the second inequality follows from (4.3), (4.4) and (3.40). Similar calculation shows that \(\bar{v}(-r_n, w) < -r_{n+1}\) for all w such that \((-r_n, w) \in U_n\). Then \(\bar{v}^{-1}\) is defined over \([-r_{n+1}, r_{n+1}]\), and we have that the image of the vertical boundary of \(U_n\) under \(g_n\) is disjoint from the vertical boundary of \(U_{n+1}\).

Then by (4.8), we have

$$\begin{aligned}&g_n(\Gamma ) \bigcap U_{n+1} \text{ is } \text{ contained } \text{ in } U_n \\&\text{ and } \text{ disjoint } \text{ from } \text{ the } \text{ horizontal } \text{ boundary } \text{ of } U_n \end{aligned}$$

Moreover, \(g_n(\Gamma ) \bigcap U_{n+1}\) is the graph of function \(\phi \bar{v}^{-1}\) restricted to \([-r_{n+1}, r_{n+1}]\). Since we already showed (1), we know that \(g_n(\Gamma ) \bigcap U_{n+1}\) is a \(\kappa _{n+1}\)-full horizontal graph, and the image of the horizontal boundary of \(U_n\) under \(g_n\) is disjoint from the horizontal boundary of \(U_{n+1}\).

This completes the proof of (2). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila, A., Fayad, B., Le Calvez, P. et al. On mixing diffeomorphisms of the disc. Invent. math. 220, 673–714 (2020). https://doi.org/10.1007/s00222-019-00937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-019-00937-7

Navigation