Skip to main content
Log in

Canonical Diffeomorphisms of Manifolds Near Spheres

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For a given Riemannian manifold \((M^n, g)\) which is near standard sphere \((S^n, g_{round})\) in the Gromov–Hausdorff topology and satisfies \(Rc \ge n-1\), it is known by Cheeger–Colding theory that M is diffeomorphic to \(S^n\). A diffeomorphism \(\varphi : M \rightarrow S^n\) was constructed in Cheeger and Colding (J Differ Geom 46(3):406–480, 1997) using Reifenberg method. In this note, we show that a desired diffeomorphism can be constructed canonically. Let \(\{f_i\}_{i=1}^{n+1}\) be the first \((n+1)\)-eigenfunctions of (Mg) and \(f=(f_1, f_2, \ldots , f_{n+1})\). Then the map \({\tilde{f}}=\frac{f}{|f|}: M \rightarrow S^n\) provides a diffeomorphism, and \({\tilde{f}}\) satisfies a uniform bi-Hölder estimate. We further show that this bi-Hölder estimate is sharp and cannot be improved to a bi-Lipschitz estimate. Our study could be considered as a continuation of Colding’s works (Invent Math 124(1–3):175–191, 1996, Invent Math 124(1–3):193–214, 1996) and Petersen’s work (Invent Math 138(1):1–21, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Honda, S.: Local spectral convergence in \({{\rm RCD}}^{*}(K, N)\) spaces. Nonlinear Anal. 177(part A), 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheeger, J.: Degeneration of Riemannian metrics under Ricci curvature bounds. Lezioni Fermiane. [Fermi Lectures] Scuola Normale Superiore, Pisa, ii+77 pp (2001)

  3. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. (2) 144(1), 189–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differ. Geom. 54(1), 13–35 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom. 54(1), 37–74 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Cheeger, J., Jiang, W., Naber, A.: Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below. Ann. Math. 193(2), 407–538 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheeger, J., Naber, A.: Regularity of Einstein manifolds and the codimension 4 conjecture. Ann. Math. (2) 182(3), 1093–1165 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X.X., Wang, B.: Space of Ricci flows (II)—Part A: Moduli of singular Calabi-Yau spaces, Forum Math. Sigma 5 (2017), Paper No. e32, 103 pp with “Further details". http://staff.ustc.edu.cn/~topspin/paper/htfurtherdetails.pdf

  10. Colding, T.H.: Shape of manifolds with positive Ricci curvature. Invent. Math. 124(1–3), 175–191 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colding, T.H.: Large manifolds with positive Ricci curvature. Invent. Math. 124(1–3), 193–214 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colding, T.H., Minicozzi, W.P., II.: Harmonic functions with polynomial growth. J. Differ. Geom. 46(1), 1–77 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colding, T.H., Naber, A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. Math. (2) 176(2), 1173–1229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding, Y.: Heat kernels and Green’s functions on limit spaces. Commun. Anal. Geom. 10(3), 475–514 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, S.S., Wang, B.: Rigidity of vector valued harmonic maps of linear growth. Geom. Dedicata. 202, 357–371 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, R.: Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal. 266(3), 1373–1394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lichnerowicz, A.: Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III. Dunod, Paris, ix+193 (1958)

  18. Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, Y.Q., Wang, B.: Ricci integrals, local functionals, and the Ricci flow. Preprint. arXiv: 2109.02449v1

  20. Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  21. Perelman, G.: A complete Riemannian manifold of positive Ricci curvature with Euclidean volume growth and nonunique asymptotic cone, Comparison geometry (Berkeley, CA, 1993-94), 165–166, Math. Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge (1997)

  22. Petersen, P.: On eigenvalue pinching in positive Ricci curvature. Invent. Math. 138(1), 1–21 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, B.: The local entropy along Ricci flow–Part A: the no-local-collapsing theorems. Camb. J. Math. 6(3), 267–346 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, B.: The local entropy along Ricci flow—Part B: the pseudo-locality theorems. Preprint. arXiv:2010.09981v1

Download references

Acknowledgements

Bing Wang would like to thank Shaosai Huang and Yu Li for helpful discussions. Xinrui Zhao is grateful to Tobias Colding for his inspirational suggestions. Bing Wang is supported by NSFC 11971452, NSFC12026251, and YSBR-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinrui Zhao.

Ethics declarations

Data Availability

There is no data associated to this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhao, X. Canonical Diffeomorphisms of Manifolds Near Spheres. J Geom Anal 33, 304 (2023). https://doi.org/10.1007/s12220-023-01375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01375-x

Keywords

Mathematics Subject Classification

Navigation