Skip to main content
Log in

Familiar trajectories facilitate the interpretation of physical forces when intercepting a moving target

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Familiarity with the visual environment affects our expectations about the objects in a scene, aiding in recognition and interaction. Here we tested whether the familiarity with the specific trajectory followed by a moving target facilitates the interpretation of the effects of underlying physical forces. Participants intercepted a target sliding down either an inclined plane or a tautochrone. Gravity accelerated the target by the same amount in both cases, but the inclined plane represented a familiar trajectory whereas the tautochrone was unfamiliar to the participants. In separate sessions, the gravity field was consistent with either natural gravity or artificial reversed gravity. Target motion was occluded from view over the last segment. We found that the responses in the session with unnatural forces were systematically delayed relative to those with natural forces, but only for the inclined plane. The time shift is consistent with a bias for natural gravity, in so far as it reflects an a priori expectation that a target not affected by natural forces will arrive later than one accelerated downwards by gravity. Instead, we did not find any significant time shift with unnatural forces in the case of the tautochrone. We argue that interception of a moving target relies on the integration of the high-level cue of trajectory familiarity with low-level cues related to target kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. While skateparks are frequent in some countries (e.g. the United States), they are rare in Rome, and specific skateboard tracks can be found only in specialized sport centres for the aficionados.

  2. The tautochrone coincides with an inverted cycloid in the case of a homogenous gravitational field. However, the tautochrone is not anymore a cycloid for an arbitrary potential energy function different from gravity (Flores and Osler 1999).

  3. The brachistochrone is the curve along which a point-like body slides from one place to another in the least amount of time. The tautochrone is also a brachistochrone for two kinds of forces (both conservative): (a) forces constant in magnitude and direction (such as gravity), (b) central forces varying in proportion to the distance from the centre (elastic force). In the first case, the curves are cycloids with horizontal bases. In the second case, the curves are hypocycloids and epicycloids, all having the origin as centre (Kasner 1909).

References

  • Bar M (2004) Visual objects in context. Nat Rev Neurosci 5:617–629

    Article  CAS  PubMed  Google Scholar 

  • Baurès R, Hecht H (2011) The effect of body posture on long-range time-to-contact estimation. Perception 40:674–681

    Article  Google Scholar 

  • Biederman I, Mezzanotte RJ, Rabinowitz JC (1982) Scene perception: detecting and judging objects undergoing relational violations. Cogn Psychol 14:143–177

    Article  CAS  PubMed  Google Scholar 

  • Bingham GP, Wickelgren EA (2008) Events and actions as dynamically molded spatiotemporal objects: a critique of the motor theory of biological motion perception. In: Shipley TF, Zacks JM (eds) Understanding events: from perception to action, pp 255–286. Oxford University Press, New York

  • Bingham GP, Rosenblum LD, Schmidt RC (1995) Dynamics and the orientation of kinematic forms in visual event recognition. J Exp Psychol Hum Percept Perform 21:1473–1493

    Article  CAS  PubMed  Google Scholar 

  • Blake R, Shiffrar M (2007) Perception of human motion. Annu Rev Psychol 58:47–73

    Article  PubMed  Google Scholar 

  • Bosco G, Carrozzo M, Lacquaniti F (2008) Contributions of the human temporo-parietal junction and MT/V5 + to the timing of interception revealed by TMS. J Neurosci 28:12071–12084

    Article  CAS  PubMed  Google Scholar 

  • Brenner E, Smeets JB, de Lussanet MH (1998) Hitting moving targets. Continuous control of the acceleration of the hand on the basis of the target’s velocity. Exp Brain Res 122:467–474

    Article  CAS  PubMed  Google Scholar 

  • Brouwer AM, Brenner E, Smeets JBJ (2002) Hitting moving objects: is target speed used in guiding the hand? Exp Brain Res 143:198–211

    Article  PubMed  Google Scholar 

  • Cresci L (1998) Le curve celebri: Invito alla storia della matematica attraverso le curve piane più affascinanti. Franco Muzzio, Padova (in Italian)

  • Dessing JC, Oostwoud Wijdenes L, Peper CLE, Beek PJ (2009) Adaptations of lateral hand movements to early and late visual occlusion in catching. Exp Brain Res 192:669–682

    Article  PubMed  Google Scholar 

  • Distler HK, Gegenfurtner KR, van Veen HA, Hawken MJ (2000) Velocity constancy in a virtual reality environment. Perception 29:1423–1435

    Article  CAS  PubMed  Google Scholar 

  • Flores E, Osler TJ (1999) The tautochrone under arbitrary potentials using fractional derivatives. Am J Phys 67:718–722

    Article  Google Scholar 

  • Gentilucci M (2003) Object familiarity affects finger shaping during grasping of fruit stalks. Exp Brain Res 149:395–400

    PubMed  Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston

    Google Scholar 

  • Gogel WC (1969) The effect of object familiarity on the perception of size and distance. Q J Exp Psychol 21:239–247

    Article  CAS  PubMed  Google Scholar 

  • Indovina I, Maffei V, Lacquaniti F (2013) Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths. Exp Brain Res 229:579–586

    Article  PubMed  Google Scholar 

  • Kasner E (1909) Tautochrones and brachistochrones. Bull Am Math Soc 15:475–483

    Article  Google Scholar 

  • Kim IK, Spelke ES (1992) Infants’ sensitivity to effects of gravity on visible object motion. J Exp Psychol Hum Percept Perform 18:385–393

    Article  CAS  PubMed  Google Scholar 

  • La Scaleia B, Lacquaniti F, Zago M (2014a) Neural extrapolation of motion for a ball rolling down an inclined plane. PLoS ONE 9(6):e99837

    Article  PubMed Central  PubMed  Google Scholar 

  • La Scaleia B, Zago M, Moscatelli A, Lacquaniti F, Viviani P (2014b) Implied dynamics biases the visual perception of velocity. PLoS ONE 9(3):e93020

    Article  PubMed Central  PubMed  Google Scholar 

  • Lacquaniti F, Carrozzo M, Borghese NA (1993) The role of vision in tuning anticipatory motor responses of the limbs. In: Berthoz A et al (eds) Multisensory control of movement. Oxford University Press, Oxford, pp 379–393

    Chapter  Google Scholar 

  • Lacquaniti F, Bosco G, Indovina I, La Scaleia B, Maffei V, Moscatelli A, Zago M (2013) Visual gravitational motion and the vestibular system in humans. Front Integr Neurosci 7:101

    Article  PubMed Central  PubMed  Google Scholar 

  • Le Séac’h AB, Senot P, McIntyre J (2010) Egocentric and allocentric reference frames for catching a falling object. Exp Brain Res 201:653–662

    Article  PubMed  Google Scholar 

  • López-Moliner J, Field DT, Wann JP (2007) Interceptive timing: prior knowledge matters. J Vis 7:1–8

    Google Scholar 

  • Marinovic W, Plooy AM, Tresilian JR (2009) The utilisation of visual information in the control of rapid interceptive actions. Exp Psychol 56:265–273

    Article  PubMed  Google Scholar 

  • Martin J (2010) The Helen of geometry. Coll Math J 41:17–28

    Article  Google Scholar 

  • McIntyre J, Zago M, Berthoz A, Lacquaniti F (2001) Does the brain model Newton’s laws? Nat Neurosci 4:693–694

    Article  CAS  PubMed  Google Scholar 

  • Miller WL, Maffei V, Bosco G, Iosa M, Zago M, Macaluso E, Lacquaniti F (2008) Vestibular nuclei and cerebellum put visual gravitational motion in context. J Neurophysiol 99:1969–1982

    Article  PubMed  Google Scholar 

  • Moscatelli A, Lacquaniti F (2011) The weight of time: gravitational force enhances discrimination of visual motion duration. J Vis 11(4):5

    Article  PubMed  Google Scholar 

  • Mrotek LA, Soechting JF (2007) Predicting curvilinear target motion through an occlusion. Exp Brain Res 178:99–9114

    Article  PubMed  Google Scholar 

  • Muchisky MM, Bingham GP (2002) Trajectory forms as a source of information about events. Percept Psychophys 64:15–31

    Article  PubMed  Google Scholar 

  • Palmer SE (1999) Vision science. Photons to phenomenology. MIT Press, Cambridge

    Google Scholar 

  • Port NL, Lee D, Dassonville P, Georgopoulos AP (1997) Manual interception of moving targets. I. Performance and movement initiation. Exp Brain Res 116:406–420

    Article  CAS  PubMed  Google Scholar 

  • Rana NC, Joag PS (1991) Classical mechanics. Tata McGraw-Hill, New Delhi

    Google Scholar 

  • Runeson S, Frykholm G (1983) Kinematic specification of dynamics as an informational basis for person-and-action perception: expectation, gender recognition, and deceptive intention. J Exp Psychol Gen 112:585–615

    Article  Google Scholar 

  • Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18:10105–10115

    CAS  PubMed  Google Scholar 

  • Senot P, Prévost P, McIntyre J (2003) Estimating time to contact and impact velocity when catching an accelerating object with the hand. J Exp Psychol Hum Percept Perform 29:219–237

    Article  PubMed  Google Scholar 

  • Senot P, Zago M, Lacquaniti F, McIntyre J (2005) Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues. J Neurophysiol 94:4471–4480

    Article  PubMed  Google Scholar 

  • Senot P, Zago M, Le Séac’h A, Zaoui M, Berthoz A, Lacquaniti F, McIntyre J (2012) When up is down in 0g: how gravity sensing affects the timing of interceptive actions. J Neurosci 32:1969–1973

    Article  CAS  PubMed  Google Scholar 

  • Shipley TF (2003) The effect of object and event orientation on perception of biological motion. Psychol Sci 14:377–380

    Article  PubMed  Google Scholar 

  • Soechting JF, Juveli JZ, Rao HM (2009) Models for the extrapolation of target motion for manual interception. J Neurophysiol 102:1491–1502

    Article  PubMed Central  PubMed  Google Scholar 

  • Teixeira LA, Chua R, Nagelkerke P, Franks IM (2006) Use of visual information in the correction of interceptive actions. Exp Brain Res 175:758–763

    Article  PubMed  Google Scholar 

  • Tramper JJ, Flanders M (2013) Predictive mechanisms in the control of contour following. Exp Brain Res 227:535–546

    Article  PubMed Central  PubMed  Google Scholar 

  • Tresilian JR (1995) Perceptual and cognitive processes in time-to-contact estimation: analysis of prediction-motion and relative judgment tasks. Percept Psychophys 57:231–245

    Article  CAS  PubMed  Google Scholar 

  • Vishton PM, Reardon KM, Stevens JA (2010) Timing of anticipatory muscle tensing control: responses before and after expected impact. Exp Brain Res 202:661–667

    Article  PubMed  Google Scholar 

  • Zago M, Bosco G, Maffei V, Iosa M, Ivanenko YP, Lacquaniti F (2004) Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. J Neurophysiol 91:1620–1634

    Article  PubMed  Google Scholar 

  • Zago M, McIntyre J, Senot P, Lacquaniti F (2008) Internal models and prediction of visual gravitational motion. Vision Res 48:1532–1538

    Article  PubMed  Google Scholar 

  • Zago M, McIntyre J, Senot P, Lacquaniti F (2009) Visuo-motor coordination and internal models for object interception. Exp Brain Res 192:571–604

    Article  PubMed  Google Scholar 

  • Zago M, Iosa M, Maffei V, Lacquaniti F (2010) Extrapolation of vertical target motion through a brief visual occlusion. Exp Brain Res 201:365–384

    Article  PubMed  Google Scholar 

  • Zago M, La Scaleia B, Miller WL, Lacquaniti F (2011a) Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions. J Vis 11(10):13

    Article  PubMed  Google Scholar 

  • Zago M, La Scaleia B, Miller WL, Lacquaniti F (2011b) Observing human movements helps decoding environmental forces. Exp Brain Res 215:53–63

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Italian University Ministry (PRIN grant) and the Italian Space Agency (SLINK, COREA and ARIANNA grants). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. A.M. is supported by the PhD program in Neurosciences of the University of Rome Tor Vergata. F.L. and M.Z. thank Prof. Andrea Lacquaniti for bringing “Curve celebri” (Famous curves) to their attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myrka Zago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijatović, A., La Scaleia, B., Mercuri, N. et al. Familiar trajectories facilitate the interpretation of physical forces when intercepting a moving target. Exp Brain Res 232, 3803–3811 (2014). https://doi.org/10.1007/s00221-014-4050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4050-6

Keywords

Navigation