Skip to main content
Log in

Effects of electrical coupling among layer 4 inhibitory interneurons on contrast-invariant orientation tuning

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Simulations of orientation selectivity in visual cortex have shown that layer 4 complex cells lacking orientation tuning are ideal for providing global inhibition that scales with contrast in order to produce simple cells with contrast-invariant orientation tuning (Lauritzen and Miller in J Neurosci 23:10201–10213, 2003). Inhibitory cortical cells have been shown to be electrically coupled by gap junctions (Fukuda and Kosaka in J Neurosci 120:5–20, 2003). Such coupling promotes, among other effects, spike synchronization and coordination of postsynaptic IPSPs (Beierlein et al. in Nat Neurosci 3:904–910, 2000; Galarreta and Hestrin in Nat Rev Neurosci 2:425–433, 2001). Consequently, it was expected (Miller in Cereb Cortex 13:73–82, 2003) that electrical coupling would promote nonspecific functional responses consistent with the complex inhibitory cells seen in layer 4 which provide broad inhibition in response to stimuli of all orientations (Miller et al. in Curr Opin Neurobiol 11:488–497, 2001). This was tested using a mechanistic modeling approach. The orientation selectivity model of Lauritzen and Miller (J Neurosci 23:10201–10213, 2003) was reproduced with and without electrical coupling between complex inhibitory neurons. Although extensive coupling promotes uniform firing in complex cells, there were no detectable improvements in contrast-invariant orientation selectivity unless there were coincident changes in complex cell firing rates to offset the untuned excitatory component that grows with contrast. Thus, changes in firing rates alone (with or without coupling) could improve contrast-invariant orientation tuning of simple cells but not synchronization of complex inhibitory neurons alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alonso JM (2002) Neural connections and receptive field properties in the primary visual cortex. Neuroscientist 8:443–456

    Article  PubMed  Google Scholar 

  • Amitai Y, Gibson JR, Beierlein M, Patrick SL, Ho AM, Connors BW, Golomb D (2002) The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J Neurosci 22:4142–4152

    PubMed  CAS  Google Scholar 

  • Anderson J, Lampl I, Gillespie D, Ferster D (2000) The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290:1968–1972

    Article  PubMed  CAS  Google Scholar 

  • Banitt Y, Martin K, Segev I (2007) A biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression. J Neurosci 27:10230–10239

    Article  PubMed  CAS  Google Scholar 

  • Beierlein M, Gibson JR, Connors BW (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3:904–910

    Article  PubMed  CAS  Google Scholar 

  • Bennett M, Zukin R (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511

    Article  PubMed  CAS  Google Scholar 

  • Carnevale N, Hines M (2006) The NEURON book. Cambridge University Press, New York

    Book  Google Scholar 

  • Connors B (2008) Electrical signaling with neuronal gap junctions. In: Harris A, Locke D (eds) Connexins: a guide, chap 6. Humana Press, New Jersey, pp 143–164

    Google Scholar 

  • Cruikshank S, Landisman C, Mancilla J, Connors B (2005) Connexon connexions in the thalamocortical system. Prog Brain Res 149:41–57

    Article  PubMed  Google Scholar 

  • DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD (1999) Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J Neurosci 19:4046–4064

    PubMed  CAS  Google Scholar 

  • Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31:477–485

    Article  PubMed  CAS  Google Scholar 

  • Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588

    PubMed  CAS  Google Scholar 

  • Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex. Annu Rev Neurosci 23:441–471

    Article  PubMed  CAS  Google Scholar 

  • Finn I, Priebe N, Ferster D (2007) The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron 54:137–152

    Article  PubMed  CAS  Google Scholar 

  • Fricker D, Miles R (2001) Interneurons, spike timing, and perception. Neuron 32:771–774

    Article  PubMed  CAS  Google Scholar 

  • Fukuda T, Kosaka T (2003) Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat. Neuroscience 120:5–20

    Article  PubMed  CAS  Google Scholar 

  • Fukuda T, Kosaka T, Singer W, Galuske R (2006) Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J Neurosci 26:3434–3443

    Article  PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75

    Article  PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (2001) Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2:425–433

    Article  PubMed  CAS  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79

    Article  PubMed  CAS  Google Scholar 

  • Gilbert C (1977) Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol 268:391–421

    PubMed  CAS  Google Scholar 

  • Hansel D, Van Vreeswijk C (2002) How noise contributes to contrast invariance of orientation tuning in cat visual cortex. J Neurosci 22:5118–5128

    PubMed  CAS  Google Scholar 

  • Hirsch JA, Martinez LM, Pillai C, Alonso JM, Wang Q, Sommer FT (2003) Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nat Neurosci 6:1300–1308

    Article  PubMed  CAS  Google Scholar 

  • Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  Google Scholar 

  • Lauritzen TZ, Miller KD (2003) Different roles for simple-cell and complex-cell inhibition in V1. J Neurosci 23:10201–10213

    PubMed  CAS  Google Scholar 

  • Lewis T, Rinzel J (2003) Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J Comput Neurosci 14:283–309

    Article  PubMed  Google Scholar 

  • Li G, Yang Y, Liang Z, Xia J, Yang Y, Zhou Y (2008) GABA-mediated inhibition correlates with orientation selectivity in primary visual cortex of cat. Neuroscience 155:914–922

    Article  PubMed  CAS  Google Scholar 

  • Miller K (1994) A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competititon between ON- and OFF-center inputs. J Neurosci 14:409–441

    PubMed  CAS  Google Scholar 

  • Miller KD (2003) Understanding layer 4 of the cortical circuit: a model based on cat V1. Cereb Cortex 13:73–82

    Article  PubMed  Google Scholar 

  • Miller KD, Pinto DJ, Simons DJ (2001) Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr Opin Neurobiol 11:488–497

    Article  PubMed  CAS  Google Scholar 

  • Nowak L, Sanchez-Vives M, McCormick D (2008) Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types. Cereb Cortex 18:1058–1078

    Article  PubMed  Google Scholar 

  • Ohki K, Chung S, Kara P, Hubener M, Bonhoeffer T, Reid R (2006) Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442:925–928

    Article  PubMed  CAS  Google Scholar 

  • Palmer S, Miller K (2007) Effects of inhibitory gain and conductance fluctuations in a simple model for contrast-invariant orientation tuning in Cat V1. J Neurophysiol 98:63–78

    Article  PubMed  Google Scholar 

  • Ringach DL, Hawken MJ, Shapley R (2003) Dynamics of orientation tuning in macaque V1: the role of global and tuned suppression. J Neurophysiol 90:342–352

    Article  PubMed  Google Scholar 

  • Sanchez-Vives M, Nowak L, McCormick D (2000) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20:4267–4285

    PubMed  CAS  Google Scholar 

  • Sclar G, Freeman R (1982) Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast. Exp Brain Res 46:457–461

    Article  PubMed  CAS  Google Scholar 

  • Tamas G, Buhl EH, Lorincz A, Somogyi P (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3:366–371

    Article  PubMed  CAS  Google Scholar 

  • Teich A, Qian N (2006) Comparison among some models of orientation selectivity. J Neurophysiol 96:404–419

    Article  PubMed  Google Scholar 

  • Troyer TW, Krukowski AE, Priebe NJ, Miller KD (1998) Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J Neurosci 18:5908–5927

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Thomas Lauritzen for comments on preliminary work leading to this publication. This work was made possible with support from NSERC and the Faculty of Medicine at the University of Ottawa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre A. Fortier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortier, P.A. Effects of electrical coupling among layer 4 inhibitory interneurons on contrast-invariant orientation tuning. Exp Brain Res 208, 127–138 (2011). https://doi.org/10.1007/s00221-010-2483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2483-0

Keywords

Navigation