Skip to main content

Aspect Ratio of the Receptive Field Makes a Major Contribution to the Bandwidth of Orientation Selectivity in Cat V1

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (V)

Part of the book series: Advances in Cognitive Neurodynamics ((ICCN))

Abstract

Orientation selectivity is an emergent property of neurons in the primary visual cortex (V1). Orientation selectivity based on spike counts was quantified by bandwidth and circular variance (CV) of the orientation tuning curve. In this study, we studied bandwidth of the orientation tuning curve in cat V1 and its relationship to some physiological parameters. We used drifting sinusoidal grating to test the size of the length and width tunings for single neuron. We observed that simple cells have more elongated excitatory receptive field, while the complex cells have more squarer excitatory receptive field. Furthermore, we found that there was a stronger correlation between tuning width and aspect ratio than CV and aspect ratio. But there are notable differences in orientation selectivity between simple and complex cells. These findings suggest that the aspect ratio of the receptive field is a major factor that affects bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringach, D.L., Shapley, R.M., Hawken, M.J.: Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 22, 5639–5651 (2002)

    PubMed  CAS  Google Scholar 

  2. Batschelet, E.: Circular Statistics in Biology. Academic, London (1981)

    Google Scholar 

  3. Swindale, N.V.: Orientation tuning curves: empirical description and estimation of parameters. Biol. Cybern. 78(1), 45–56 (1998)

    Article  PubMed  CAS  Google Scholar 

  4. Xing, D., Ringach, D.L., Hawken, M.J., Shapley, R.M.: Untuned suppression makes a major contribution to the enhancement of orientation selectivity in macaque V1. J. Neurosci. 31, 15972–15982 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Movshon, J.A., Thompson, I.D., Tolhurst, D.J.: Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J. Physiol. 283, 53–77 (1978)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Jones, L., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1233–1258 (1987)

    PubMed  CAS  Google Scholar 

  7. Sasaki, K.S., Ohzawa, I.: Internal spatial organization of receptive fields of complex cells in the early visual cortex. J. Neurophysiol. 98, 1194–1212 (2007)

    Article  PubMed  Google Scholar 

  8. Chen, K., Song, X.M., Li, C.Y.: Contrast-dependent variations in the excitatory classical receptive field and suppressive nonclassical receptive field of cat primary visual cortex. Cereb. Cortex 23, 283–292 (2013)

    Article  PubMed  Google Scholar 

  9. Xu, T., Wang, L., Song, X.M., Li, C.Y.: The detection of orientation continuity and discontinuity by cat V1 neurons. PLoS ONE 8, e79723 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Song, X.M., Li, C.Y.: Contrast-dependent and contrast-independent spatial summation of primary visual cortical neurons of the cat. Cereb. Cortex 18, 331–336 (2008)

    Article  PubMed  Google Scholar 

  11. DeAngelis, G.C., Freeman, R.D., Ohzawa, I.: Length and width tuning of neurons in the cat’s primary visual cortex. J. Neurophysiol. 71, 347–374 (1994)

    PubMed  CAS  Google Scholar 

  12. Skottun, B.C., DeValois, R.L., Grosof, D.H., Movshon, J.A., Albrecht, D.G., Bonds, A.B.: Classifying simple and complex cells on the basis of response modulation. Visi. Res. 31, 1079–1086 (1991)

    CAS  Google Scholar 

  13. Swindale, N.V.: Orientation tuning curves: empirical description and estimation of parameters. Biol. Cybern. 78, 45–56 (1998)

    Article  PubMed  CAS  Google Scholar 

  14. Worgotter, F., Eysel, U.T.: Quantification and comparison of cell properties in cat’s striate cortex determined by different types of stimuli. Biol. Cybern. 57, 349–355 (1987)

    Article  PubMed  CAS  Google Scholar 

  15. Leventhal, A.G., Thompson, K.G., Liu, D., Zhou, Y., Ault, S.J.: Concomitant sensitivity to orientation, direction, and color of cells in layers ~2, 3, and 4 of monkey striate cortex. J. Neurosci. 15, 1808–1818 (1995)

    PubMed  CAS  Google Scholar 

  16. Watkins, D.W., Berkley, M.A.: The orientation selectivity of single neurons in cat striate cortex. Exp. Brain Res. 19, 433–446 (1974)

    Article  PubMed  CAS  Google Scholar 

  17. Heggelund, P., Albus, K.: Orientation selectivity of single cells in striate cortex of cat: the shape of orientation tuning curves. Visi. Res. 18, 1067–1071 (1978)

    Article  CAS  Google Scholar 

  18. Leventhal, A.G., Hirsch, H.V.B.: Receptive-field properties of neurons in different laminae of visual cortex of cat. J. Neurophysiol. 41, 948–962 (1978)

    PubMed  CAS  Google Scholar 

  19. Schiller, P.H., Finlay, B.L., Volman, S.F.: Quantitative studies of single cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. J. Neurophysiol. 39, 1320–1333 (1976)

    PubMed  CAS  Google Scholar 

  20. Gur, M., Kagan, I., Snodderly, D.M.: Orientation and direction electivity of neurons in V1 of alert monkeys: functional relationships and laminar distributions. Cereb. Cortex 15, 1207–1221 (2005)

    Article  PubMed  Google Scholar 

  21. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Mooser, F., Bosking, W.H., Fitzpatrick, D.: A morphological basis for orientation tuning in primary visual cortex. Nat. Neurosci. 7, 872–879 (2004)

    Article  PubMed  CAS  Google Scholar 

  23. Chisum, H.J., Mooser, F., Fitzpatrick, D.: Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J. Neurosci. 23, 2947–2960 (2003)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. D.A. Tigwell for comments on the manuscript and X.Z. Xu for technical assistance. We also thank Dr. Y.C. Cai for the help with the stimulus and analysis programs. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Xu, T., Li, M., Chen, K., Wang, L., Yan, HM. (2016). Aspect Ratio of the Receptive Field Makes a Major Contribution to the Bandwidth of Orientation Selectivity in Cat V1. In: Wang, R., Pan, X. (eds) Advances in Cognitive Neurodynamics (V). Advances in Cognitive Neurodynamics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0207-6_20

Download citation

Publish with us

Policies and ethics