Skip to main content

Advertisement

Log in

Prehension synergies and control with referent hand configurations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb–virtual finger (VF) level (VF is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb–VF level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb–VF level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamovich S, Archambault PS, Ghafouri M, Levin MF, Poizner H, Feldman AG (2001) Hand trajectory invariance in reaching movements involving the trunk. Exp Brain Res 138:288–303

    Article  CAS  PubMed  Google Scholar 

  • Aoki T, Niu X, Latash ML, Zatsiorsky VM (2006) Effects of friction at the digit-object interface on the digit forces in multi-finger prehension. Exp Brain Res 172:425–438

    Google Scholar 

  • Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for movements of the hand. In: Goodwin AW, Darian-Smith I (eds) Hand function and the neocortex. Springer, Berlin, pp 111–129

    Google Scholar 

  • Asatryan DG, Feldman AG (1965) Functional tuning of the nervous system with control of movements or maintenance of a steady posture. I. Mechanographic analysis of the work of the limb on execution of a postural task. Biophysics 10:925–935

    Google Scholar 

  • Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics 11:565–578

    Google Scholar 

  • Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of science: Recent attempts to falsify the equilibrium-point hypothesis. Exp Brain Res 161:91–103

    Article  PubMed  Google Scholar 

  • Feldman AG, Levin MF (1995) Positional frames of reference in motor control: their origin and use. Behav Brain Sci 18:723–806

    Article  Google Scholar 

  • Feldman AG, Levin MF (2009) The equilibrium-point hypothesis—past, present and future. Adv Exp Med Biol 629:699–726

    Article  PubMed  Google Scholar 

  • Flanagan JR, Burstedt MK, Johansson RS (1999) Control of fingertip forces in multidigit manipulation. J Neurophysiol 81:1706–1717

    CAS  PubMed  Google Scholar 

  • Flanagan JR, Bowman MC, Johansson RS (2006) Control strategies in object manipulation tasks. Curr Opin Neurobiol 16:650–659

    Article  CAS  PubMed  Google Scholar 

  • Friedman J, Flash T (2007) Task-dependent selection of grasp kinematics and stiffness in human object manipulation. Cortex 43:444–460

    Article  PubMed  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML (2007a) Hierarchies of synergies: an example of the two-hand, multi-finger tasks. Exp Brain Res 179:167–180

    Article  PubMed  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML (2007b) Emerging and disappearing synergies in a hierarchically controlled system. Exp Brain Res 183:259–270

    Article  PubMed  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML (2009) Hierarchical control of static prehension: II. Multi-digit synergies. Exp Brain Res 194:1–15

    Article  PubMed  Google Scholar 

  • Gysin P, Kaminski TR, Gordon AM (2003) Coordination of fingertip forces in object transport during locomotion. Exp Brain Res 149:371–379

    PubMed  Google Scholar 

  • Hajian AZ, Howe RD (1997) Identification of the mechanical impedance at the human finger tip. J Biomech Eng T ASME 119:109–114

    Article  CAS  Google Scholar 

  • Hinder MR, Milner TE (2003) The case for an internal dynamics model versus equilibrium point control in human movement. J Physiol 549:953–963

    Article  CAS  PubMed  Google Scholar 

  • Hogan N (1985) The mechanics of multi-joint posture and movement control. Biol Cybern 52:315–331

    Article  CAS  PubMed  Google Scholar 

  • Iberall T (1987) The nature of human prehension: three dexterous hands in one. In: Proceedings of 1987 IEEE international conference robotics automation, Raleigh, NC, pp 396–401

  • Johansson RS (1996) Sensory control of dexterous manipulation in humans. In: Wing A, Haggard P, Flanagan R (eds) Hand and brain, Academic Press, San Diego, pp 381–414

  • Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564

    Article  CAS  PubMed  Google Scholar 

  • Kang N, Shinohara M, Zatsiorsky VM, Latash ML (2004) Learning multi-finger synergies: an uncontrolled manifold analysis. Exp Brain Res 157:336–350

    Article  PubMed  Google Scholar 

  • Kao I, Cutkosky MR, Johansson RS (1997) Robotic stiffness control and calibration as applied to human grasping tasks. IEEE Trans Rob Autom 13:557–566

    Article  Google Scholar 

  • Kluzik J, Diedrichsen J, Shadmehr R, Bastian AJ (2008) Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm? J Neurophysiol 100:1455–1464

    Article  PubMed  Google Scholar 

  • Kugler PN, Turvey MT (1987) Information, natural law, and the self-assembly of rhythmic movement. Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Latash ML (1994) Reconstruction of equilibrium trajectories and joint stiffness patterns during single-joint voluntary movements under different instructions. Biol Cybern 71:441–450

    Article  CAS  PubMed  Google Scholar 

  • Latash ML (2008) Synergy. Oxford University Press, New York

    Book  Google Scholar 

  • Latash ML, Gottlieb GL (1990) Compliant characteristics of single joints: preservation of equifinality with phasic reactions. Biol Cybern 62:331–336

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Gottlieb GL (1991) Reconstruction of elbow joint compliant characteristics during fast and slow voluntary movements. Neuroscience 43:697–712

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Gottlieb GL (1992) Virtual trajectories of single-joint movements performed under two basic strategies. Neuroscience 47:357–365

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Zatsiorsky VM (1993) Joint stiffness: myth or reality? Hum Move Sci 12:653–692

    Google Scholar 

  • Latash ML, Zatsiorsky VM (2009) Multi-finger prehension: control of a redundant motor system. Adv Exp Med Biol 629:597–618

    Article  PubMed  Google Scholar 

  • Latash ML, Scholz JF, Danion F, Schöner G (2001) Structure of motor variability in marginally redundant multi-finger force production tasks. Exp Brain Res 141:153–165

    Google Scholar 

  • Latash ML, Kang N, Patterson D (2002a) Finger coordination in persons with Down syndrome: atypical patterns of coordination and the effects of practice. Exp Brain Res 146:345–355

    Article  PubMed  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2002b) Motor control strategies revealed in the structure of motor variability. Exer Sport Sci Rev 30:26–31

    Article  Google Scholar 

  • Latash ML, Scholz JF, Danion F, Schöner G (2002c) Finger coordination during discrete and oscillatory force production tasks. Exp Brain Res 146:412–432

    Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:275–307

    Google Scholar 

  • Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2001) Bilateral deficit and symmetry in finger force production during two-hand multi-finger tasks. Exp Brain Res 141:530–540

    Article  CAS  PubMed  Google Scholar 

  • Loeve M (1955) Probability theory. Van Nostrand, New York

  • Marsden CD, Merton RA, Morton HB, Rothwell JC, Traub MM (1981) Reliability and efficacy of the long-latency stretch reflex in the human thumb. J Physiol 316:47–60

    CAS  PubMed  Google Scholar 

  • Mason MT, Salisbury JK (1985) Robot hands and the mechanics of manipulation. The MIT Press, Cambridge

  • Milner TE, Franklin DW (1998) Characterization of multijoint finger stiffness dependence on finger posture and force direction. IEEE T Bio-med Eng 45:1363–1375

    Article  CAS  Google Scholar 

  • Niu X, Latash ML, Zatsiorsky VM (2007) Prehension synergies in the grasps with complex friction patterns: local vs. synergic effects and the template control. J Neurophysiol 98:16–28

    Article  PubMed  Google Scholar 

  • Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153:275–288

    Article  PubMed  Google Scholar 

  • Pilon J-F, De Serres SJ, Feldman AG (2007) Threshold position control of arm movement with anticipatory increase in grip force. Exp Brain Res 181:49–67

    Article  PubMed  Google Scholar 

  • Rossi E, Mitnitski A, Feldman AG (2002) Sequential control signals determine arm and trunk contributions to hand transport during reaching in humans. J Physiol 538:659–671

    Article  CAS  PubMed  Google Scholar 

  • Santello M, Soechting JF (2000) Force synergies for multifingered grasping. Exp Brain Res 133:457–467

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RA, McGown C (1980) Terminal accuracy of unexpected loaded rapid movements: evidence for a mass-spring mechanism in programming. J Mot Behav 12:149–161

    CAS  PubMed  Google Scholar 

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  CAS  PubMed  Google Scholar 

  • Scholz JP, Kang N, Patterson D, Latash ML (2003) Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without Down syndrome. Exp Brain Res 153:45–58

    Article  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 5:3208–3224

    Google Scholar 

  • Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing. MIT Press, Cambridge

    Google Scholar 

  • Shim JK, Latash ML, Zatsiorsky VM (2005) Prehension synergies in three dimensions. J Neurophysiol 93:766–776

    Google Scholar 

  • Traub MM, Rothwell JC, Marsden CD (1980) A grab reflex in the human hand. Brain 103:869–884

    Article  CAS  PubMed  Google Scholar 

  • Van Doren CL (1998) Grasp stiffness as a function of grasp force and finger span. Mot Control 2:352–378

    Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  Google Scholar 

  • Yang J-F, Scholz JP, Latash ML (2007) The role of kinematic redundancy in adaptation of reaching. Exp Brain Res 176:54–69

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM (2002) Kinetics of human movement. Human Kinetics, Champaign

  • Zatsiorsky VM, Latash ML (2004) Prehension synergies. Exer Sport Sci Rev 32:75–80

    Google Scholar 

  • Zatsiorsky VM, Latash ML (2008) Multi-finger prehension: an overview. J Motor Behav 40:446–476

    Article  Google Scholar 

  • Zatsiorsky VM, Li Z-M, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Scholz JP, Zatsiorsky VM, Latash ML (2008) What do synergies do? Effects of secondary constraints on multi-digit synergies in accurate force-production tasks. J Neurophysiol 99:500–513

    Article  PubMed  Google Scholar 

  • Zhang W, Olafsdottir HB, Zatsiorsky VM, Latash ML (2009) Mechanical analysis and hierarchies of multi-digit synergies during accurate object rotation. Mot Control 13:251–279

    Google Scholar 

Download references

Acknowledgments

Supported in part by NIH Grants AG-018751, NS-035032, and AR-048563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Latash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latash, M.L., Friedman, J., Kim, S.W. et al. Prehension synergies and control with referent hand configurations. Exp Brain Res 202, 213–229 (2010). https://doi.org/10.1007/s00221-009-2128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-2128-3

Keywords

Navigation