Skip to main content
Log in

Manual asymmetries in grasp pre-shaping and transport–grasp coordination

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Few studies have directly compared the visuo-motor transformation of grasp pre-shaping or transport–grasp coordination of reach-to-grasp movements between the two hands. Our objective was to determine if there are manual asymmetries in right-handed adults as a foundation to investigate hemispheric specialization in individuals post-stroke. Twelve non-disabled right-handed adults performed rapid reach-to-grasp movements to cylinders of three sizes as vision of the arm and hand was partially occluded. We reasoned that the hand system (left or right) that is superior in anticipatory planning of aperture scaling and movement preparation would be more likely to exhibit early grasp pre-shaping under this experimental manipulation. Movement time, hand path, transport velocity, and aperture were derived from 3D electromagnetic sensor data. The visuo-motor transformation of object sizes into an action of aperture pre-shaping was quantified using the correlations between initial aperture velocity and object diameter, and peak aperture and object diameter. Coordination between hand transport and aperture grasping was quantified using the cross-correlation between transport velocity and aperture size. Peak aperture and object diameter were strongly correlated for both hands. However, early aperture velocity and object diameter were correlated only for left-hand movements. Cross-correlation analyses revealed a strong association between transport velocity and aperture only for right-hand movements. Together, these results suggest earlier anticipatory control for the left hand in the visuo-motor transformation of grasp pre-shaping and a stronger transport–grasp linkage for the right hand. Further, initial aperture velocity was a more sensitive measure of these manual asymmetries than peak aperture. Our findings compliment the specialization previously observed for pointing movements of the dominant and non-dominant hemispheric/limb system and the coordinated control of complex movements and visuo-spatial components, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Annett M, Annett J (1979) Individual differences in right and left reaction time. Br J Psychol 70:393–404

    PubMed  CAS  Google Scholar 

  • Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421

    Article  PubMed  Google Scholar 

  • Bagesteiro LB, Sainburg RL (2003) Nondominant arm advantages in load compensation during rapid elbow joint movements. J Neurophysiol 90:1503–1513

    Article  PubMed  Google Scholar 

  • Boulinguez P, Nougier V, Velay JL (2001a) Manual asymmetries in reaching movement control. I. Study of right-handers. Cortex 37:101–122

    Article  PubMed  CAS  Google Scholar 

  • Boulinguez P, Velay JL, Nougier V (2001b) Manual asymmetries in reaching movement control. II. Study of left-handers. Cortex 37:123–138

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Chua R, Elliott D, Goodman D (1990) The contribution of vision to asymmetries in manual aiming. Neuropsychologia 28:1215–1220

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Chua R, Goodman D, Byblow WD, Elliott D (1995) The preparation of aiming movements. Brain Cogn 28:133–154

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Gerloff C, Hallett M, Cohen LG (1997) Involvement of the ipsilateral motor cortex in finger movements of different complexities. Ann Neurol 41:247–254

    Article  PubMed  CAS  Google Scholar 

  • Chua R, Carson RG, Goodman D, Elliott D (1992) Asymmetries in the spatial localization of transformed targets. Brain Cogn 20:227–235

    Article  PubMed  CAS  Google Scholar 

  • Cramer SC, Finklestein SP, Schaechter JD, Bush G, Rosen BR (1999) Activation of distinct motor cortex regions during ipsilateral and contralateral finger movements. J Neurophysiol 81:383–387

    PubMed  CAS  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Fitzgerald PB, Roshan L, Chen R (2002) The mechanisms of interhemispheric inhibition in the human motor cortex. J Physiol 543:317–326

    Article  PubMed  CAS  Google Scholar 

  • Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26:2260–2268

    Article  PubMed  Google Scholar 

  • Desmurget M, Grea H, Prablanc C (1998) Final posture of the upper limb depends on the initial position of the hand during prehension movements. Exp Brain Res 119:511–516

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Rothwell JC, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P (1999) Intracortical origin of the short latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex. Exp Brain Res 129:494–499

    Article  PubMed  CAS  Google Scholar 

  • Esparza DY, Archambault PS, Winstein CJ, Levin MF (2003) Hemispheric specialization in the co-ordination of arm and trunk movements during pointing in patients with unilateral brain damage. Exp Brain Res 148:488–497

    PubMed  Google Scholar 

  • Eviatar Z, Hellige JB, Zaidel E (1997) Individual differences in lateralization: effects of gender and handedness. Neuropsychology 11:562–576

    Article  PubMed  CAS  Google Scholar 

  • Farne A, Roy AC, Paulignan Y, Rode G, Rossetti Y, Boisson D, Jeannerod M (2003) Visuo-motor control of the ipsilateral hand: evidence from right brain-damaged patients. Neuropsychologia 41:739–757

    Article  PubMed  CAS  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    PubMed  CAS  Google Scholar 

  • Fisk JD, Goodale MA (1988) The effects of unilateral brain damage on visually guided reaching: hemispheric differences in the nature of the deficit. Exp Brain Res 72:425–435

    Article  PubMed  CAS  Google Scholar 

  • Gentilucci M, Castiello U, Corradini ML, Scarpa M, Umilta C, Rizzolatti G (1991) Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia 29:361–378

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA (1988) Hemispheric differences in motor control. Behav Brain Res 30:203–214

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Meenan JP, Bulthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4:604–610

    Article  PubMed  CAS  Google Scholar 

  • Grosskopf A, Kuhtz-Buschbeck JP (2006) Grasping with the left and right hand: a kinematic study. Exp Brain Res 168:230–240

    Article  PubMed  Google Scholar 

  • Haaland KY, Prestopnik JL, Knight RT, Lee RR (2004) Hemispheric asymmetries for kinematic and positional aspects of reaching. Brain 127:1145–1158

    Article  PubMed  Google Scholar 

  • Haggard P, Wing A (1998) Coordination of hand aperture with the spatial path of hand transport. Exp Brain Res 118:286–292

    Article  PubMed  CAS  Google Scholar 

  • Hanakawa T, Parikh S, Bruno MK, Hallett M (2005) Finger and face representations in the ipsilateral precentral motor areas in humans. J Neurophysiol 93:2950–2958

    Article  PubMed  Google Scholar 

  • Harris-Love M, Cohen LG (2005) High level bilateral talks: focus on “effect of low-frequency repetitive transcranial magnetic stimulation on interhemispheric inhibition”.[comment]. J Neurophysiol 94:1664–1665

    Article  PubMed  Google Scholar 

  • Hellige JB (2001) Hemispheric asymmetry: what’s right and what’s left. Harvard University Press, Cambridge

    Google Scholar 

  • Hellige JB, Cumberland N (2001) Categorical and coordinate spatial processing: more on contributions of the transient/magnocellular visual system. Brain Cogn 45:155–163

    Article  PubMed  CAS  Google Scholar 

  • Hermsdorfer J, Laimgruber K, Kerkhoff G, Mai N, Goldenberg G (1999a) Effects of unilateral brain damage on grip selection, coordination, and kinematics of ipsilesional prehension. Exp Brain Res 128:41–51

    Article  PubMed  CAS  Google Scholar 

  • Hermsdorfer J, Ulrich S, Marquardt C, Goldenberg G, Mai N (1999b) Prehension with the ipsilesional hand after unilateral brain damage. Cortex 35:139–161

    Article  PubMed  CAS  Google Scholar 

  • Hoff B, Arbib MA (1993) Models of trajectory formation and temporal interaction of reach and grasp. J Mot Behav 25:175–192

    PubMed  Google Scholar 

  • Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: LJaB A (ed) Attention and performance IX. Erlbaum, Hillsdale

    Google Scholar 

  • Jeannerod M (1984) The timing of natural prehension movement. J Mot Behav 16:235–254

    PubMed  CAS  Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320

    Article  PubMed  CAS  Google Scholar 

  • Kim S-G, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Hutchinson S, Schlaug G, Pascual-Leone A (2003) Ipsilateral motor cortex activation on functional magnetic resonance imaging during unilateral hand movements is related to interhemispheric interactions. Neuroimage 20:2259–2270

    Article  PubMed  Google Scholar 

  • Kosslyn SM, Koenig O, Barrett A, Cave CB, Tang J, Gabrieli JD (1989) Evidence for two types of spatial representations: hemispheric specialization for categorical and coordinate relations. J Exp Psychol Hum Percept Perform 15:723–735

    Article  PubMed  CAS  Google Scholar 

  • Kudoh N, Hattori M, Numata N, Maruyama K (1997) An analysis of spatiotemporal variability during prehension movements: effects of object size and distance. Exp Brain Res 117:457–464

    Article  PubMed  CAS  Google Scholar 

  • Marteniuk RG, Leavitt JL, MacKenzie CL, Athenes S (1990) Functional relationships between grasp and transport components in a prehension task. Hum Mov Sci 9:149–176

    Article  Google Scholar 

  • Meulenbroek RG, Rosenbaum DA, Vaughan J (2001) Planning reaching and grasping movements: simulating reduced movement capabilities in spastic hemiparesis. Motor Control 5:136–150

    PubMed  CAS  Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55(3):400–409

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Paulignan Y, Frak VG, Toni I, Jeannerod M (1997) Influence of object position and size on human prehension movements. Exp Brain Res 114:226–234

    Article  PubMed  CAS  Google Scholar 

  • Paulignan Y, Jeannerod M (1996) In: Alan WM, Flanagan RJ, Haggard P (eds) Hand and brain: the neurophysiology and psychology of hand movements. Academic Press, New York

  • Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, Lisk LM, Morris GL, Mueller WM, Estkowski LD (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318

    PubMed  CAS  Google Scholar 

  • Rogers BP, Carew JD, Meyerand ME (2004) Hemispheric asymmetry in supplementary motor area connectivity during unilateral finger movements. Neuroimage 22:855–859

    Article  PubMed  Google Scholar 

  • Roth EC, Hellige JB (1998) Spatial processing and hemispheric asymmetry. Contributions of the transient/magnocellular visual system. J Cogn Neurosci 10:472–484

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Urbano A, Babiloni C, Onorati P, Babiloni F (1996) Human cortical activity related to unilateral movements: a high resolution EEG study. Neuroreport 8:203–206

    Article  PubMed  CAS  Google Scholar 

  • Watson NV, Kimura D (1989) Right-hand superiority for throwing but not for intercepting. Neuropsychologia 27:1399–1414

    Article  PubMed  CAS  Google Scholar 

  • Wing AM, Turton A, Fraser C (1986) Grasp size and accuracy of approach in reaching. J Mot Behav 18:245–260

    PubMed  CAS  Google Scholar 

  • Winstein CJ, Garfinkel A (1989) Qualitative dynamics of disordered human locomotion: a preliminary investigation. J Mot Behav 21:373–391

    PubMed  CAS  Google Scholar 

  • Winstein CJ, Pohl PS (1995) Effects of unilateral brain damage on the control of goal-directed hand movements. Exp Brain Res 105:163–174

    Article  PubMed  CAS  Google Scholar 

  • Winter DA (2004) Biomechanics and motor control of human movement. Wiley, New York

    Google Scholar 

  • Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M, Wassermann EM (1999) Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518:895–906

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Allan Wu for DataWizard programming consultation, Dr. Beth Fisher for revisions of earlier versions of this manuscript, Dr. Joseph Hellige for valuable discussions of visual processing and hemispheric specialization, and Dr. Michael A. Arbib for his critical comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolee J. Winstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tretriluxana, J., Gordon, J. & Winstein, C.J. Manual asymmetries in grasp pre-shaping and transport–grasp coordination. Exp Brain Res 188, 305–315 (2008). https://doi.org/10.1007/s00221-008-1364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1364-2

Keywords

Navigation