Skip to main content

Advertisement

Log in

The effect of handedness on mental rotation of hands: a systematic review and meta-analysis

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Body-specific mental rotation is thought to rely upon internal representations of motor actions. Handedness is a source of distinctly different motor experience that shapes the development of such internal representations. Yet, the influence of handedness upon hand mental rotation has never been systematically evaluated. Five databases were searched for studies evaluating hand left/right judgement tasks in adults. Two independent reviewers performed screening, data extraction, and critical appraisal. Eighty-seven datasets were included, with 72 datasets pooled; all had unclear/high risk of bias. Meta-analyses showed that right-handers were faster, but not more accurate, than left-handers at hand mental rotation. A unique effect of handedness was found on performance facilitation for images corresponding to the dominant hand. Meta-analyses showed that right-handers were quicker at identifying images of right hands than left hands—a dominance advantage not evident in left-handers. Differing hand representations (more lateralised hand dominance in right-handers) likely underpin these findings. Given potential differences between hand preference and motor performance, future research exploring their distinct contributions to mental rotation is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data available upon reasonable request through contacting the corresponding author.

References

  • Altman, D., Egger, M., Pocock, S., Gøtzsche, P., & Vandenbroucke, J. (2007). Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ (Clinical research ed.), 335(7624), 806–808.

    Article  Google Scholar 

  • Amunts, K., Jäncke, L., Mohlberg, H., Steinmetz, H., & Zilles, K. (2000). Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia, 38(3), 304–312.

    Article  PubMed  Google Scholar 

  • Ashton, R., McFarland, K., Walsh, F., & White, K. (1978). Imagery ability and the identification of hands: A chronometric analysis. Acta psychologica, 42(4), 253–262.

    Article  PubMed  Google Scholar 

  • Betts, G. H. (1909). The distribution and functions of mental imagery, vol. 26. Columbia: Teachers College, Columbia University.

    Google Scholar 

  • Bonda, E., Petrides, M., Frey, S., & Evans, A. (1995). Neural correlates of mental transformations of the body-in-space. Proceedings of the National Academy of Sciences, 92(24), 11180–11184.

    Article  Google Scholar 

  • Boonstra, A. M., de Vries, S. J., Veenstra, E., Tepper, M., Feenstra, W., & Otten, E. (2012). Using the hand laterality judgement task to assess motor imagery: A study of practice effects in repeated measurements. International Journal of Rehabilitation Research, 35(3), 278–280.

    Article  PubMed  Google Scholar 

  • Bourrelier, J., Kubicki, A., Rouaud, O., Crognier, L., & Mourey, F. (2015). Mental rotation as an indicator of motor representation in patients with mild cognitive impairment [Original Research]. Frontiers in Aging Neuroscience, 7(238), 1–6. https://doi.org/10.3389/fnagi.2015.00238

    Article  Google Scholar 

  • Brady, N., Maguinness, C., & Choisdealbha, Á. N. (2011). My hand or yours? Markedly different sensitivity to egocentric and allocentric views in the hand laterality task. PLoS ONE, 6(8), e23316.

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun, N., Kranczioch, C., Liepert, J., Dettmers, C., Zich, C., Büsching, I., et al. (2017). Motor imagery impairment in postacute stroke patients. Neural Plasticity, 2017(2017), 1–13.

    Article  Google Scholar 

  • Briggs, G. G., & Nebes, R. D. (1975). Patterns of hand preference in a student population. Cortex, 11(3), 230–238.

    Article  PubMed  Google Scholar 

  • Casasanto, D. (2009). Embodiment of abstract concepts: Good and bad in right- and left-handers. Journal of Experimental Psychology: General, 138(3), 351–367.

    Article  Google Scholar 

  • Chapman, L. J., & Chapman, J. P. (1987). The measurement of handedness. Brain and Cognition, 6(2), 175–183.

    Article  PubMed  Google Scholar 

  • Chen, J., Wei, D., Yang, L., Wu, X., Ma, W., Fu, Q., et al. (2015). Neurocognitive impairment on motor imagery associated with positive symptoms in patients with first-episode schizophrenia: Evidence from event-related brain potentials. Psychiatry Research: Neuroimaging, 231(3), 236–243. https://doi.org/10.1016/j.pscychresns.2014.11.016

    Article  PubMed  Google Scholar 

  • Choisdealbha, Á. N., Brady, N., & Maguinness, C. (2011). Differing roles for the dominant and non-dominant hands in the hand laterality task. Experimental Brain Research, 211(1), 73–85.

    Article  Google Scholar 

  • Cocksworth, R. L., & Punt, T. D. (2013). When the left hand does not know what the left hand is doing: Response mode affects mental rotation of hands. Experimental Brain Research, 228(1), 87–95.

    Article  PubMed  Google Scholar 

  • Conson, M., Cecere, R., Baiano, C., et al. (2020a). Implicit motor imagery and the lateral occipitotemporal cortex: Hints for tailoring non-invasive brain stimulation. International Journal of Environmental Research and Public Health, 17, E5851.

    Article  PubMed  Google Scholar 

  • Conson, M., De Bellis, F., Baiano, C., Zappullo, I., Raimo, G., Finelli, C., et al. (2020b). Sex differences in implicit motor imagery: Evidence from the hand laterality task. Acta Psychologica, 203, 103010–103017. https://doi.org/10.1016/j.actpsy.2020.103010

    Article  PubMed  Google Scholar 

  • Conson, M., Mazzarella, E., Donnarumma, C., & Trojano, L. (2012). Judging hand laterality from my or your point of view: Interactions between motor imagery and visual perspective. Neuroscience Letters, 530(1), 35–40.

    Article  PubMed  Google Scholar 

  • Conson, M., Mazzarella, E., & Trojano, L. (2011). Self-touch affects motor imagery: A study on posture interference effect. Experimental Brain Research, 215(2), 115–122.

    Article  PubMed  Google Scholar 

  • Conson, M., Pistoia, F., Sarà, M., Grossi, D., & Trojano, L. (2010). Recognition and mental manipulation of body parts dissociate in locked-in syndrome. Brain and Cognition, 73(3), 189–193.

    Article  PubMed  Google Scholar 

  • Conson, M., Sarà, M., Pistoia, F., & Trojano, L. (2009). Action observation improves motor imagery: Specific interactions between simulative processes. Experimental Brain Research, 199(1), 71–81.

    Article  PubMed  Google Scholar 

  • Conson, M., Volpicella, F., De Bellis, F., Orefice, A., & Trojano, L. (2017). “Like the palm of my hands”: Motor imagery enhances implicit and explicit visual recognition of one’s own hands. Acta Psychologica, 180, 98–104.

    Article  PubMed  Google Scholar 

  • Cooper, L. A., & Shepard, R. N. (1975). Mental transformation in the identification of left and right hands. Journal of Experimental Psychology: Human Perception and Performance, 1(1), 48–56.

    Google Scholar 

  • Dalecki, M., Hoffmann, U., & Bock, O. (2012). Mental rotation of letters, body parts and complex scenes: Separate or common mechanisms? Human Movement Science, 31(5), 1151–1160.

    Article  PubMed  Google Scholar 

  • Dassonville, P., Zhu, X. H., Uurbil, K., Kim, S. G., & Ashe, J. (1997). Functional activation in motor cortex reflects the direction and the degree of handedness. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 14015–14018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Date, S., Kurumadani, H., Watanabe, T., & Sunagawa, T. (2015). Transcranial direct current stimulation can enhance ability in motor imagery tasks. NeuroReport, 26(11), 613–617.

    Article  PubMed  Google Scholar 

  • De Bellis, F., Trojano, L., Errico, D., Grossi, D., & Conson, M. (2017). Whose hand is this? Differential responses of right and left extrastriate body areas to visual images of self and others’ hands. Cognitive, Affective, & Behavioral Neuroscience, 17(4), 826–837.

    Article  Google Scholar 

  • De Lange, F. P., Hagoort, P., & Toni, I. (2005). Neural topography and content of movement representations. Journal of cognitive neuroscience, 17(1), 97–112.

    Article  PubMed  Google Scholar 

  • de Lange, F. P., Helmich, R. C., & Toni, I. (2006). Posture influences motor imagery: An fMRI study. Neuroimage, 33(2), 609–617.

    Article  PubMed  Google Scholar 

  • De Simone, L., Tomasino, B., Marusic, N., Eleopra, R., & Rumiati, R. I. (2013). The effects of healthy aging on mental imagery as revealed by egocentric and allocentric mental spatial transformations. Acta Psychologica, 143(1), 146–156.

    Article  PubMed  Google Scholar 

  • de Vries, S., Tepper, M., Otten, B., & Mulder, T. (2011). Recovery of motor imagery ability in stroke patients. Rehabilitation Research and Practice, 2011, 283840. https://doi.org/10.1155/2011/283840.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards, L. M., Causby, R. S., Stewart, H., & Stanton, T. R. (2019). Differential influence of habitual third-person vision of a body part on mental rotation of images of hands and feet. Experimental Brain Research, 237(5), 1325–1337.

    Article  PubMed  Google Scholar 

  • Elkins, M. R. (2018). Updating systematic reviews. Journal of Physiotherapy, 64(1), 1–3.

    Article  PubMed  Google Scholar 

  • Ferri, F., Frassinetti, F., Ardizzi, M., Costantini, M., & Gallese, V. (2012). A sensorimotor network for the bodily self. Journal of cognitive neuroscience, 24(7), 1584–1595.

    Article  PubMed  Google Scholar 

  • Ferri, F., Frassinetti, F., Costantini, M., & Gallese, V. (2011). Motor simulation and the bodily self. PLoS ONE, 6(3), e17927.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiori, F., Sedda, A., Ferrè, E. R., Toraldo, A., Querzola, M., Pasotti, F., et al. (2013). Exploring motor and visual imagery in amyotrophic lateral sclerosis. Experimental Brain Research, 226(4), 537–547.

    Article  PubMed  Google Scholar 

  • Fiorio, M., Tinazzi, M., & Aglioti, S. M. (2006). Selective impairment of hand mental rotation in patients with focal hand dystonia. Brain, 129(1), 47–54.

    Article  PubMed  Google Scholar 

  • Fiorio, M., Tinazzi, M., Ionta, S., Fiaschi, A., Moretto, G., Edwards, M. J., et al. (2007). Mental rotation of body parts and non-corporeal objects in patients with idiopathic cervical dystonia. Neuropsychologia, 45(10), 2346–2354.

    Article  PubMed  Google Scholar 

  • Fuelscher, I., Williams, J., & Hyde, C. (2015). Developmental improvements in reaching correction efficiency are associated with an increased ability to represent action mentally. Journal of Experimental Child Psychology, 140, 74–91.

    Article  PubMed  Google Scholar 

  • Funk, M., & Brugger, P. (2008). Mental rotation of congenitally absent hands. Journal of the International Neuropsychological Society, 14(1), 81–89.

    Article  PubMed  Google Scholar 

  • Funk, M., Brugger, P., & Wilkening, F. (2005). Motor processes in children’s imagery: The case of mental rotation of hands. Developmental Science, 8(5), 402–408.

    Article  PubMed  Google Scholar 

  • Ganis, G., Keenan, J. P., Kosslyn, S. M., & Pascual-Leone, A. (2000). Transcranial magnetic stimulation of primary motor cortex affects mental rotation. Cerebral Cortex, 10(2), 175–180.

    Article  PubMed  Google Scholar 

  • Gentilucci, M., Daprati, E., & Gangitano, M. (1998a). Implicit visual analysis in handedness recognition. Consciousness and Cognition, 7(3), 478–493.

    Article  PubMed  Google Scholar 

  • Gentilucci, M., Daprati, E., & Gangitano, M. (1998b). Right-handers and left-handers have different representations of their own hand. Cognitive Brain Research, 6(3), 185–192.

    Article  PubMed  Google Scholar 

  • Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization: Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Archives of neurology, 42(5), 428–459.

    Article  PubMed  Google Scholar 

  • Grabowska, A., Gut, M., Binder, M., Forsberg, L., Rymarczyk, K., & Urbanik, A. (2012). Switching handedness: fMRI study of hand motor control in right-handers, left-handers and converted left-handers. Acta Neurobiologiae Experimentalis, 72(4), 439–451.

    PubMed  Google Scholar 

  • Grigoriadis, I., & Punt, D. (2016). Can the hand laterality recognition task be performed without using motor imagery? Manual Therapy, 100(25), e144–e145.

    Article  Google Scholar 

  • Guo, X., Lyu, Y., Bekrater-Bodmann, R., Flor, H., & Tong, S. (2015 Aug). Handedness change after dominant side amputation: Evaluation from a hand laterality judgment task. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, 8002–8005. https://doi.org/10.1109/EMBC.2015.7320249.

    Article  Google Scholar 

  • Habacha, H., Molinaro, C., Tabben, M., & Lejeune-Poutrain, L. (2014). Implementation of specific motor expertise during a mental rotation task of hands. Experimental Brain Research, 232(11), 3465–3473.

    Article  PubMed  Google Scholar 

  • Hamada, H., Matsuzawa, D., Sutoh, C., Hirano, Y., Chakraborty, S., Ito, H., et al. (2018). Comparison of brain activity between motor imagery and mental rotation of the hand tasks: A functional magnetic resonance imaging study. Brain Imaging and Behavior, 12(6), 1596–1606.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heremans, E., D’hooge, A.-M., De Bondt, S., Helsen, W., & Feys, P. (2012). The relation between cognitive and motor dysfunction and motor imagery ability in patients with multiple sclerosis. Multiple Sclerosis Journal, 18(9), 1303–1309.

    Article  PubMed  Google Scholar 

  • Herron, J. (2012). Neuropsychology of left-handedness. New York: Academic Press.

    Google Scholar 

  • Higgins, J. P., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions, vol 4. New York: Wiley.

    Google Scholar 

  • Hirnstein, M., Ocklenburg, S., Schneider, D., & Hausmann, M. (2009). Sex differences in left–right confusion depend on hemispheric asymmetry. Cortex, 45(7), 891–899.

    Article  PubMed  Google Scholar 

  • Hudson, M. L., McCormick, K., Zalucki, N., & Moseley, G. L. (2006). Expectation of pain replicates the effect of pain in a hand laterality recognition task: Bias in information processing toward the painful side? European Journal of Pain, 10(3), 219–219.

    Article  PubMed  Google Scholar 

  • Ionta, S., & Blanke, O. (2009). Differential influence of hands posture on mental rotation of hands and feet in left and right handers. Experimental Brain Research, 195(2), 207–217.

    Article  PubMed  Google Scholar 

  • Ionta, S., Fourkas, A. D., Fiorio, M., & Aglioti, S. M. (2007). The influence of hands posture on mental rotation of hands and feet. Experimental Brain Research, 183(1), 1–7.

    Article  PubMed  Google Scholar 

  • Ionta, S., Perruchoud, D., Draganski, B., & Blanke, O. (2012). Body context and posture affect mental imagery of hands. PLoS ONE, 7(3), e34382.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ionta, S., Villiger, M., Jutzeler, C. R., Freund, P., Curt, A., & Gassert, R. (2016). Spinal cord injury affects the interplay between visual and sensorimotor representations of the body. Scientific Reports, 6, 20144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, B. W., McKenzie, K. J., & Hamm, J. P. (2002). Cerebral asymmetry for mental rotation: Effects of response hand, handedness and gender. NeuroReport, 13(15), 1929–1932.

    Article  PubMed  Google Scholar 

  • Jones, B., & Anuza, T. (1982). Effects of sex, handedness, stimulus and visual field on “mental rotation.” Cortex, 18(4), 501–514.

    Article  PubMed  Google Scholar 

  • Katschnig, P., Edwards, M. J., Schwingenschuh, P., Aguirregomozcorta, M., Kägi, G., Rothwell, J. C., et al. (2010). Mental rotation of body parts and sensory temporal discrimination in fixed dystonia. Movement Disorders, 25(8), 1061–1067.

    Article  PubMed  Google Scholar 

  • Kemlin, C., Moulton, E., Samson, Y., & Rosso, C. (2016). Do motor imagery performances depend on the side of the lesion at the acute stage of stroke? Frontiers in Human Neuroscience, 10, 321–331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemlin-Méchin, C., Moulton, E., & Rosso, C. (2015). Is motor imagery really a window for studying stroke recovery at subacute stage? Annals of Physical and Rehabilitation Medicine, 58, e3.

    Article  Google Scholar 

  • Kosslyn, S. M., DiGirolamo, G. J., Thompson, W. L., & Alpert, N. M. (1998). Mental rotation of objects versus hands: Neural mechanisms revealed by positron emission tomography. Psychophysiology, 35(2), 151–161.

    Article  PubMed  Google Scholar 

  • Lebon, F., Lotze, M., Stinear, C. M., & Byblow, W. D. (2012). Task-dependent interaction between parietal and contralateral primary motor cortex during explicit versus implicit motor imagery. PLoS ONE, 7(5), e37850.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu, Y., Guo, X., Bekrater-Bodmann, R., Flor, H., & Tong, S. (2016). Phantom limb perception interferes with motor imagery after unilateral upper-limb amputation. Scientific Reports, 6(1), 1–10.

    Article  Google Scholar 

  • Lyu, Y., Guo, X., Bekrater-Bodmann, R., Flor, H., & Tong, S. (2017). An event-related potential study on the time course of mental rotation in upper-limb amputees. Clinical Neurophysiology, 128(5), 744–750.

    Article  PubMed  Google Scholar 

  • Magni, N. E., McNair, P. J., & Rice, D. A. (2018). Sensorimotor performance and function in people with osteoarthritis of the hand: A case–control comparison. Seminars in Arthritis and Rheumatism, 47(5), 676–682.

    Article  PubMed  Google Scholar 

  • Maimon-Mor, R. O., Schone, H. R., Moran, R., Brugger, P., & Makin, T. R. (2020). Motor control drives visual bodily judgements. Cognition, 196, 104120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazhari, S., Parvaresh, N., Pourrahimi, A. M., Rajabizadeh, G., & Abasabadi, K. (2017). Mental imagery in first-degree relatives of patients with schizophrenia. Iranian Journal of Psychiatry and Behavioral Sciences, 11(2), e7425.

    Google Scholar 

  • Mazhari, S., Tabrizi, Y. M., & Nejad, A. G. (2015). Neural evidence for compromised mental imagery in individuals with chronic schizophrenia. The Journal of Neuropsychiatry and Clinical Neurosciences, 27(2), 127–132.

    Article  PubMed  Google Scholar 

  • Meng, S., Oi, M., Saito, G., & Saito, H. (2017). The neural correlates of biomechanical constraints in hand laterality judgment task performed from other person’s perspective: A near-infrared spectroscopy study. PLoS ONE, 12(9), e0183818.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng, S., Oi, M., Sekiyama, K., & Saito, H. (2016). The neural mechanism of biomechanical constraints in the hand laterality judgment task: A near-infrared spectroscopy study. Neuroscience Letters, 627, 211–215.

    Article  PubMed  Google Scholar 

  • Meugnot, A., Almecija, Y., & Toussaint, L. (2014). The embodied nature of motor imagery processes highlighted by short-term limb immobilization. Experimental psychology, 61(3), 180–186. https://doi.org/10.1027/1618-3169/a000237

    Article  PubMed  Google Scholar 

  • Moseley, G. L. (2004). Why do people with complex regional pain syndrome take longer to recognize their affected hand? Neurology, 62(12), 2182–2186.

    Article  PubMed  Google Scholar 

  • Moseley, G. L. (2006). Graded motor imagery for pathologic pain: A randomized controlled trial. Neurology, 67(12), 2129–2134.

    Article  PubMed  Google Scholar 

  • Nico, D., Daprati, E., Rigal, F., Parsons, L., & Sirigu, A. (2004). Left and right hand recognition in upper limb amputees. Brain, 127(1), 120–132.

    Article  PubMed  Google Scholar 

  • Nicolini, C., Harasym, D., Turco, C. V., & Nelson, A. J. (2019). Human motor cortical organization is influenced by handedness. Cortex, 115, 172–183.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  PubMed  Google Scholar 

  • Osuagwu, B. A., & Vuckovic, A. (2014). Similarities between explicit and implicit motor imagery in mental rotation of hands: An EEG study. Neuropsychologia, 65, 197–210.

    Article  PubMed  Google Scholar 

  • Osuagwu, B. A., Zych, M., & Vuckovic, A. (2017). Is implicit motor imagery a reliable strategy for a brain–computer interface? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(12), 2239–2248.

    Article  PubMed  Google Scholar 

  • Parsons, L. M. (1987). Imagined spatial transformations of one’s hands and feet. Cognitive Psychology, 19(2), 178–241.

    Article  PubMed  Google Scholar 

  • Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 709–730.

    PubMed  Google Scholar 

  • Parsons, L. M. (2001). Integrating cognitive psychology, neurology and neuroimaging. Acta Psychologica, 107(1–3), 155–181.

    Article  PubMed  Google Scholar 

  • Parsons, L. M., & Fox, P. T. (1998). The neural basis of implicit movements used in recognising hand shape. Cognitive Neuropsychology, 15(1), 583–616.

    Google Scholar 

  • Parsons, L. M., Fox, P. T., Downs, J. H., Glass, T., Hirsch, T. B., Martin, C. C., et al. (1995). Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature, 375(6526), 54–58.

    Article  PubMed  Google Scholar 

  • Pelgrims, B., Andres, M., & Olivier, E. (2009). Double dissociation between motor and visual imagery in the posterior parietal cortex. Cerebral Cortex, 19(10), 2298–2307.

    Article  PubMed  Google Scholar 

  • Pelletier, R., Higgins, J., & Bourbonnais, D. (2018). Laterality recognition of images, motor performance, and aspects related to pain in participants with and without wrist/hand disorders: An observational cross-sectional study. Musculoskeletal Science and Practice, 35, 18–24.

    Article  PubMed  Google Scholar 

  • Perruchoud, D., Fiorio, M., Cesari, P., & Ionta, S. (2018). Beyond variability: Subjective timing and the neurophysiology of motor cognition. Brain Stimulation, 11(1), 175–180.

    Article  PubMed  Google Scholar 

  • Perruchoud, D., Murray, M. M., Lefebvre, J., & Ionta, S. (2014). Focal dystonia and the sensory-motor integrative loop for enacting (SMILE). Frontiers in Human Neuroscience, 8, 458.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pietsch, S., & Jansen, P. (2019). The relation between mental rotation and handedness is a consequence of how handedness is measured. Brain and Cognition, 130, 28–36.

    Article  PubMed  Google Scholar 

  • Pool, E. M., Rehme, A. K., Fink, G. R., Eickhoff, S. B., & Grefkes, C. (2014). Handedness and effective connectivity of the motor system. Neuroimage, 99, 451–460.

    Article  PubMed  Google Scholar 

  • Porac, C., & Coren, S. (1981). Lateral preferences and human behavior. Berlin: Springer.

    Book  Google Scholar 

  • Reinersmann, A., Haarmeyer, G. S., Blankenburg, M., Frettlöh, J., Krumova, E. K., Ocklenburg, S., et al. (2010). Left is where the L is right. Significantly delayed reaction time in limb laterality recognition in both CRPS and phantom limb pain patients. Neuroscience Letters, 486(3), 240–245.

    Article  PubMed  Google Scholar 

  • Review Manager (RevMan) [Computer program] (2014). Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration.

  • Saimpont, A., Pozzo, T., & Papaxanthis, C. (2009). Aging affects the mental rotation of left and right hands. PLoS ONE, 4(8), e6714.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scandola, M., Dodoni, L., Lazzeri, G., Arcangeli, C. A., Avesani, R., Moro, V., et al. (2019). Neurocognitive benefits of physiotherapy for spinal cord injury. Journal of Neurotrauma, 36, 2028–2035.

    Article  PubMed  Google Scholar 

  • Schmid, A. B., & Coppieters, M. W. (2012). Left/right judgment of body parts is selectively impaired in patients with unilateral carpal tunnel syndrome. The Clinical Journal of Pain, 28(7), 615–622.

    Article  PubMed  Google Scholar 

  • Schwoebel, J., Friedman, R., Duda, N., & Coslett, H. B. (2001). Pain and the body schema: Evidence for peripheral effects on mental representations of movement. Brain, 124(10), 2098–2104.

    Article  PubMed  Google Scholar 

  • Sekiyama, K. (1982). Kinesthetic aspects of mental representations in the identification of left and right hands. Perception & Psychophysics, 32(2), 89–95.

    Article  Google Scholar 

  • Sekiyama, K., Kinoshita, T., & Soshi, T. (2014). Strong biomechanical constraints on young children’s mental imagery of hands. Royal Society Open Science, 1(4), 140118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703.

    Article  PubMed  Google Scholar 

  • Shimoda, N., Takeda, K., Imai, I., Kaneko, J., & Kato, H. (2008). Cerebral laterality differences in handedness: A mental rotation study with NIRS. Neuroscience Letters, 430(1), 43–47.

    Article  PubMed  Google Scholar 

  • Somers, M., Shields, L. S., Boks, M. P., Kahn, R. S., & Sommer, I. E. (2015). Cognitive benefits of right-handedness: A meta-analysis. Neuroscience & Biobehavioral Reviews, 51(1), 48–63.

    Article  Google Scholar 

  • Stanton, T., Leake, H., Wallwork, S., & Moseley, G. (2015). Disruptions to cortical proprioceptive representation in people with chronic neck pain. Physiotherapy, 101, e1433–e1434.

    Article  Google Scholar 

  • Stanton, T. R., Lin, C.-W.C., Smeets, R. J., Taylor, D., Law, R., & Lorimer Moseley, G. (2012). Spatially defined disruption of motor imagery performance in people with osteoarthritis. Rheumatology, 51(8), 1455–1464.

    Article  PubMed  Google Scholar 

  • Tabrizi, Y. M., Mazhari, S., Nazari, M. A., Zangiabadi, N., & Sheibani, V. (2014). Abnormalities of motor imagery and relationship with depressive symptoms in mildly disabling relapsing-remitting multiple sclerosis. Journal of Neurologic Physical Therapy, 38(2), 111–118.

    Article  PubMed  Google Scholar 

  • Tabrizi, Y. M., Mazhari, S., Nazari, M. A., Zangiabadi, N., Sheibani, V., & Azarang, S. (2013). Compromised motor imagery ability in individuals with multiple sclerosis and mild physical disability: An ERP study. Clinical Neurology and Neurosurgery, 115(9), 1738–1744.

    Article  PubMed  Google Scholar 

  • Takeda, K., Shimoda, N., Sato, Y., Ogano, M., & Kato, H. (2010). Reaction time differences between left-and right-handers during mental rotation of hand pictures. Laterality, 15(4), 415–425.

    Article  PubMed  Google Scholar 

  • Tao, W., Liu, Q., Huang, X., Tao, X., Yan, J., Teeter, C. J., et al. (2009). Effect of degree and direction of rotation in egocentric mental rotation of hand: An event-related potential study. NeuroReport, 20(2), 180–185.

    Article  PubMed  Google Scholar 

  • Ter Horst, A. C., Van Lier, R., & Steenbergen, B. (2010). Mental rotation task of hands: Differential influence number of rotational axes. Experimental Brain Research, 203(2), 347–354.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thayer, Z. C., & Johnson, B. W. (2006). Cerebral processes during visuo-motor imagery of hands. Psychophysiology, 43(4), 401–412.

    Article  PubMed  Google Scholar 

  • Thomas, M., Dalecki, M., & Abeln, V. (2013). EEG coherence during mental rotation of letters, hands and scenes. International journal of psychophysiology, 89(1), 128–135.

    Article  PubMed  Google Scholar 

  • Vannuscorps, G., Pillon, A., & Andres, M. (2012). Effect of biomechanical constraints in the hand laterality judgment task: Where does it come from? Frontiers in Human Neuroscience, 6, 299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel, J. J., Bowers, C. A., & Vogel, D. S. (2003). Cerebral lateralization of spatial abilities: A meta-analysis. Brain and Cognition, 52(2), 197–204.

    Article  PubMed  Google Scholar 

  • Volkmann, J., Schnitzler, A., Witte, O., & Freund, H.-J. (1998). Handedness and asymmetry of hand representation in human motor cortex. Journal of Neurophysiology, 79(4), 2149–2154.

    Article  PubMed  Google Scholar 

  • Voyer, D., Jansen, P., & Kaltner, S. (2017). Mental rotation with egocentric and object-based transformations. The Quarterly Journal of Experimental Psychology, 70(11), 2319–2330.

    Article  PubMed  Google Scholar 

  • Wallwork, S. B., Butler, D. S., Fulton, I., Stewart, H., Darmawan, I., & Moseley, G. L. (2013). Left/right neck rotation judgments are affected by age, gender, handedness and image rotation. Manual Therapy, 18, 225–230.

    Article  PubMed  Google Scholar 

  • Wallwork, S. B., Butler, D. S., Wilson, D. J., & Moseley, G. L. (2015). Are people who do yoga any better at a motor imagery task than those who do not? British Journal of Sports Medicine, 49(2), 123–127.

    Article  PubMed  Google Scholar 

  • White, K., & Ashton, R. (1976). Handedness assessment inventory. Neuropsychologia, 14(2), 261–264.

    Article  PubMed  Google Scholar 

  • Willems, R. M., & Hagoort, P. (2009). Hand preference influences neural correlates of action observation. Brain Research, 1269, 90–104.

    Article  PubMed  Google Scholar 

  • Willems, R. M., Peelen, M. V., & Hagoort, P. (2010). Cerebral lateralization of face-selective and body-selective visual areas depends on handedness. Cerebral Cortex, 20(7), 1719–1725.

    Article  PubMed  Google Scholar 

  • Willems, R. M., Toni, I., Hagoort, P., & Casasanto, D. (2009). Body-specific motor imagery of hand actions: Neural evidence from right- and left-handers. Frontiers in Human Neuroscience, 3(1), 39.

    PubMed  PubMed Central  Google Scholar 

  • Zapparoli, L., Invernizzi, P., Gandola, M., Berlingeri, M., De Santis, A., Zerbi, A., et al. (2014). Like the back of the (right) hand? A new fMRI look on the hand laterality task. Experimental Brain Research, 232(12), 3873–3895.

    Article  PubMed  Google Scholar 

  • Zapparoli, L., Saetta, G., De Santis, C., Gandola, M., Zerbi, A., Banfi, G., et al. (2016). When I am (almost) 64: The effect of normal ageing on implicit motor imagery in young elderlies. Behavioural Brain Research, 303, 137–151.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ms Ashley Grant (University of South Australia) for her assistance in the study review process and Prof Tomohiko Nishigami (Prefectural University of Hiroshima) for his assistance in translating studies written in Japanese. The authors would also like to acknowledge the following researchers who shared raw or summary data for this review (note: not all studies were included in the review, in some cases raw data resulted in confirmation of study exclusion): Dr. Angela Sirigu, in collaboration with Dr. Daniele Nico and Dr. Elena Daprati (Institute of Cognitive Science Marc Jeannerod UMR5229 CNRS); Dr. Annina Schmid (Nuffield Department of Clinical Neurosciences; University of Oxford) in collaboration with Dr. Michel Coppieters (VU); Prof Peter Brugger and Dr. Marion Funk (University Hospital of Zurich); Dr. Nady Hoyek (Université Claude Bernard Lyon I—UFR STAPS); Dr. Federico Fiori (Kings College London) in collaboration with Dr. Gabriella Bottini (Univeresita di Pavia); Dr. Floris de Lange (Donders Institute, Radboud University Nijmegen) in collaboration with Prof Guy Vingerhoets (Ghent University); Dr. Gilles Vannuscorps (UCLouvain); Dr. Helene Hjelmervik (Universitetet i Bergen); Dr. Arjan ter Horst (Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Dr. Jacqueline Williams (Victoria University); Dr. Kaoru Sekiyama (Kumamoto University); Dr. Kotaro Takeda (Fujita Health University) in collaboration with Hiroyuki Kato (International University of Health and Welfare Hospital) and Dr. Nobuaki Shimoda (Kyorin University); Dr. Laura Zapparoli (Università degli Studi de Milano-Bicocca); Prof Lucette Toussaint (l'Université de Poitiers); Dr. Mark Dalecki (York University); Dr. Marco Hirnstein (Universitetet i Bergen) in collaboration with Dr. Markus Haussmann (Durham University); Dr. Mirta Fiorio (Università di Verona) in collaboration with Dr. Salvatoremaria Aglioti (Sapienza Università di Roma); Dr. Nuala Brady (University College Dublin) in collaboration with Aine Ni Choisdealbha (University of Lancaster); Petra Winter-Katschnig (Medical University of Graz); Dr. Silvio Ionta (Centre Hospitalier Universitaire Vaudois and University of Lausanne); Dr. Sarah Wallwork (University of South Australia); Dr. Yan Zhang (institute of Molecular Medicine, Peking University); Dr. Hiroshi Kurumadani (Graduate School of Biomedical & Health Sciences, Hiroshima University); Dr. Ian Fuelscher (Cognitive Neuroscience Unit, School of Psychology, Deakin University); Dr. David Punt (School of Sport, Exercise and Rehabilitation, University of Birmingham); Dr. Xiaoli Guo (School of Biomedical Engineering, Shanghai Jiao Tong University); Dr. Claire Kemlin (L'Institut du Cerveau et de la Moelle Épinière); A/Prof Shahrzad Mazhari (Neuroscience Research Centre, Kerman University of Medical Sciences); Dr. Nicoló Magni (Department of Physiotherapy, Auckland University of Technology); Dr. René Pelletier (School of Rehabilitation, University of Montréal); Prof Daniel Voyer (Department of Psychology, University of New Brunswick); Dr. Michel Andres (Université catholique de Louvain) in collaboration with Dr. Barbara Pelgrims (Université catholique de Louvain); Dr. Annika Reinersmann (Ruhr-Universität Bochum); Megan Hudson (The University of Sydney); Dr. Martin Lotze (University of Griefswald) and Florent Lebon (University of Auckland). Last, the authors would like to acknowledge the researchers who corresponded with us, but who either did not have the necessary data available (confirmed or unclear) or study exclusion was confirmed prior to data sharing: Dr. Anne Bockler (University of Würzburg); Dr. Anna Devlin (Monash University); Dr. Annemarijke Boonstra (Reavlidatie-Friesland); Dr. Barbara Tomasino and Prof Raffaella Rumiati (SISSA); Dr. Claude-Alain Hauert (Université de Genevé) in collaboration with Leila Petit (Macquire University)”; Dr. Etienne Olivier (in memorandum) and Dr. Michel Andres (Université catholique de Louvain); Dr. Francesca Ferri (University of Essex); Prof Vittorio Gallese (University of Parma); Dr. Hiroaki Kawamichi (Gunma University); Dr. John Schwoebel (Utica College); Dr. Johnathan Marsden (University of Plymouth); Dr. Kazmer Karadi (University of Pécs); Dr. Markus Kruger (University of Griefswald); Dr. Corrinne Cian (Université Grenoble Alpes); Dr. Ruth Seurinck (University of Ghent); Dr. Stephen Kosslyn (Foundry College & Harvard University); Dr. Shahrzad Mazhari (KMU University); Prof Stephen Woods (University of Houston); Francois Tremblay (School of Rehabilitation Sciences, University of Ottawa); Dr. Christian Hyde (Cognitive Neuroscience Unit, School of Psychology, Deakin University); Dr. Joachim Liepert (Neurorehabilitation Department, Kliniken Schmieder Heidelberg); Dr. Eva Bonda (Founder & Director of NeuroAisthesis); Prof Lorimer Moseley in collaboration with Ms Helen Bray (University of South Australia); Prof Blake Johnson (Macquarie University, AUS) and Ms Zoe Thayer (University of Sydney); Dr. Tsubasa Kawasaki (Department of Health Promotion Science, Tokyo Metropolitan University) in collaboration with Dr. Takahiro Higuchi (Department of Health Promotion Science, Tokyo Metropolitan University); A/Prof Justin Bonny (Applied Physics Laboratory, Johns Hopkins University); Dr. Lynn Cooper (Columbia University); Nobuyuki Kawai (Nagoya University); Erica Weber (University of California) and Steven Paul Woods (University of California).

Funding

TRS is supported by a National Health & Medical Research Career Development Fellowship (ID1141735). These funding sources played no role in the conception, analysis, or publication of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TRS, RSC and LME contributed to the study conception and design. All the authors performed the literature search and data analysis. HGJ, FB, TRS and MC drafted the review. All the authors critically revised the review.

Corresponding author

Correspondence to T. R. Stanton.

Ethics declarations

Conflict of interest

TRS received funding from Eli Lilly Ltd to cover travel and accommodation costs in September 2014; this was unrelated to the present topic area. The remaining authors (HGJ, FAB, LME, RSC, and MC) have no conflicting interests to declare.

Ethical approval

This review contains only previously published studies. All the procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the original studies that comprised the present review.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

426_2020_1444_MOESM1_ESM.pdf

Supplementary File 1: This file includes the Medline search strategy for this systematic review and meta-analysis (PDF 89 kb)

426_2020_1444_MOESM2_ESM.docx

Supplementary File 2: This file includes the sensitivity analyses undertaken for Comparisons 1 to 5 for reaction time and accuracy, where applicable. (DOCX 15160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, H.G., Braithwaite, F.A., Edwards, L.M. et al. The effect of handedness on mental rotation of hands: a systematic review and meta-analysis. Psychological Research 85, 2829–2881 (2021). https://doi.org/10.1007/s00426-020-01444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-020-01444-8

Navigation