Skip to main content
Log in

Human 3-D aVOR with and without otolith stimulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We describe in detail the frequency response of the human three-dimensional angular vestibulo-ocular response (3-D aVOR) over a frequency range of 0.05–1 Hz. Gain and phase of the human aVOR were determined for passive head rotations in the dark, with the rotation axis either aligned with or perpendicular to the direction of gravity (earth-vertical or earth-horizontal). In the latter case, the oscillations dynamically stimulated both the otolith organs and the semi-circular canals. We conducted experiments in pitch and yaw, and compared the results with previously-published roll data. Regardless of the axis of rotation and the orientation of the subject, the gain in aVOR increased with frequency to about 0.3 Hz, and was approximately constant from 0.3 to 1 Hz. The aVOR gain during pitch and yaw rotations was larger than during roll rotations. Otolith and canal cues combined differently depending upon the axis of rotation: for torsional and pitch rotations, aVOR gain was higher with otolith input; for yaw rotations the aVOR was not affected by otolith stimulation. There was a phase lead in all three dimensions for frequencies below 0.3 Hz when only the canals were stimulated. For roll and pitch rotations this phase lead vanished with dynamic otolith stimulation. In contrast, the horizontal phase showed no improvement with additional otolith input during yaw rotations. The lack of a significant otolith contribution to the yaw aVOR was observed when subjects were supine, prone or lying on their sides. Our results confirm studies with less-natural stimuli (off-vertical axis rotation) that the otoliths contribute a head-rotation signal to the aVOR. However, the magnitude of the contribution depends on the axis of rotation, with the gain in otolith-canal cross-coupling being smallest for yaw axis rotations. This could be because, in humans, typical yaw head movements will stimulate the otoliths to a much lesser extent then typical pitch and roll head movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–D
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We adopt the sign conventions for horizontal and vertical eye movements that are traditionally used in studies of 2-D eye movements. By deviating from the “right hand rule”, we are not forced, for example, to represent a downward eye movement as an upward deflection on a graph.

References

  • Angelaki DE, Hess BJ (1995) Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol 73:1729–1751

    CAS  PubMed  Google Scholar 

  • Angelaki DE, Hess BJ (1996) Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity. J Neurophysiol 75:2425–2440

    CAS  PubMed  Google Scholar 

  • Angelaki DE, McHenry MQ, Dickman JD, Newlands SD, Hess BJM (1999) Computation of inertial motion: neural strategies to resolve ambiguous otolith information. J Neurosci 19:316–327

    CAS  Google Scholar 

  • Angelaki DE, Newlands SD, Dickman JD (2002) Inactivation of semicircular canals causes adaptive increases in otolith-driven tilt responses. J Neurophysiol 87:1635–1640

    PubMed  Google Scholar 

  • Aw ST, Haslwanter T, Halmagyi GM, Curthoys IS, Yavor RA, Todd MJ (1996) Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations I. Responses in normal subjects. J Neurophysiol 76:4009–4020

    CAS  PubMed  Google Scholar 

  • Baloh RW, Demer J (1991) Gravity and the vertical vestibulo-ocular reflex. Exp Brain Res 83:427–433

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Pettorossi VE (1988) The otolithic origin of the vertical vestibuloocular reflex following bilateral blockage of the vertical semicircular canals in the rabbit. J Neurosci 8:2827–2835

    CAS  PubMed  Google Scholar 

  • Blanks RH, Anderson JH, Precht W (1978) Response characteristics of semicircular canal and otolith systems in cat. II. Responses of trochlear motoneurons. Exp Brain Res 32:509–528

    Article  CAS  PubMed  Google Scholar 

  • Bockisch CJ, Straumann D, Haslwanter T (2003) Eye movements during multiaxis whole-body rotations. J Neurophysiol 89:355–366

    PubMed  Google Scholar 

  • Clarke AH, Grigull J, Mueller R, Scherer H (2000) The three-dimensional vestibulo-ocular reflex during prolonged microgravity. Exp Brain Res 134:322–334

    Article  CAS  PubMed  Google Scholar 

  • Crane BT, Viirre ES, Demer JL (1997) The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration. Exp Brain Res 114:304–320

    CAS  PubMed  Google Scholar 

  • Crane BT, Tian JR, Demer JL (2000) Initial vestibulo-ocular reflex during transient angular and linear acceleration in human cerebellar dysfunction. Exp Brain Res 130:486–496

    Article  CAS  PubMed  Google Scholar 

  • Dai MJ, Curthoys IS, Halmagyi GM (1989) A model of otolith stimulation. Biol Cybern 60:185–194

    Article  CAS  PubMed  Google Scholar 

  • Darlot C, Denise P, Droulez J, Cohen B, Berthoz A (1988) Eye movements induced by off-vertical axis rotation (OVAR) at small angles of tilt. Exp Brain Res 73:91–105

    Article  CAS  PubMed  Google Scholar 

  • Demer JL, Oas JG, Baloh RW (1993) Visual-vestibular interaction in humans during active and passive, vertical head movement. J Vestibul Res 3:101–114

    CAS  Google Scholar 

  • Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675

    CAS  PubMed  Google Scholar 

  • Fetter M, Heimberger J, Black RA, Hermann W, Sievering F, Dichgans J (1996) Otolith-semicircular canal interaction during postrotatory nystagmus in humans. Exp Brain Res 108:463–472

    CAS  PubMed  Google Scholar 

  • Furman JM, Schor RH, Schumann TL (1992) Off-vertical axis rotation: a test of the otolith-ocular reflex. Ann Oto Rhinol Laryn 101:643–650

    CAS  Google Scholar 

  • Glasauer S, Mittelstaedt H (1998) Perception of spatial orientation in microgravity. Brain Res Brain Res Rev 28:185–193

    Article  CAS  PubMed  Google Scholar 

  • Groen E, Bos JE, De Graaf B (1999) Contribution of the otoliths to the human torsional vestibulo-ocular reflex. J Vestibul Res 9:27–36

    CAS  Google Scholar 

  • Harris LR, Barnes GR (1987) Orientation of vestibular nystagmus is modified by head tilt. In: Graham MD, Kemink JL (eds) The vestibular system: Neurophysiologic and clinical research. Raven, New York, pp 539–548

  • Haslwanter T, Jaeger R, Mayr S, Fetter M (2000) Three-dimensional eye-movement responses to off-vertical axis rotations in humans. Exp Brain Res 134:96–106

    Article  CAS  PubMed  Google Scholar 

  • Hepp K (1990) On Listing’s law. Commun Math Phys 132:285–292

    Google Scholar 

  • Hyden D, Larsby B (1991) Velocity dependence of the vestibulo-ocular reflex over a broad frequency range. Acta Otolaryngol Suppl 481:293–294

    CAS  PubMed  Google Scholar 

  • Jaeger R, Takagi A, Haslwanter T (2002) Modeling the relation between head orientations and otolith responses in humans. Hearing Res 173:29–42

    Article  CAS  Google Scholar 

  • Kasteel-van Linge A, Maas AJ (1990) Quantification of visuo-vestibular interaction up to 5.0 Hz in normal subjects. Acta Otolaryngol 110:18–24

    PubMed  Google Scholar 

  • Kleinbaum DG, Kupper LL, Muller KE (1988) Applied regression analysis and other multivariable methods. PWS-Kent, Boston, MA

  • Lansberg MP, Guedry J, Graybiel A (1965) Effect of changing resultant linear acceleration relative to the subject on nystagmus generated by angular acceleration. Aerosp Med 456–460

  • Mardia KV (1972) Statistics of directional data. Academic, New York

  • Mathog RH (1972) Testing of the vestibular system by sinusoidal angular acceleration. Acta Otolaryngol 74:96–103

    CAS  PubMed  Google Scholar 

  • Mayne R (1974) A systems concept of the vestibular organs. In: Kornhuber HH (ed) Handbook of sensory physiology. Springer, Berlin Heidelberg New York, pp 493–580

  • Merfeld DM, Young LR (1995) The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Exp Brain Res 106:111–122

    CAS  PubMed  Google Scholar 

  • Merfeld D, Young LR, Oman CM, Shelhamer M (1993) A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J Vestibul Res 3:141–161

    CAS  Google Scholar 

  • Merfeld DM, Zupan LH, Gifford CA (2001) Neural processing of gravito-inertial cues in humans. II. Influence of the semicircular canals during eccentric rotation. J Neurophysiol 85:1648–1660

    CAS  PubMed  Google Scholar 

  • Minor LB, Lasker DM, Backous DD, Hullar TE (1999) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses. J Neurophysiol 82:1254–1270

    CAS  PubMed  Google Scholar 

  • Mittelstaedt H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–281

    CAS  PubMed  Google Scholar 

  • Mittelstaedt H, Glasauer S (1993) Crucial effects of weightlessness on human orientation. J Vestibul Res 3:307–314

    CAS  Google Scholar 

  • Mok D, Ro A, Cadera W, Crawford DJ, Vilis T (1992) Rotation of Listing’s Plane during vergence. Vision Res 32:2055–2064

    Article  CAS  PubMed  Google Scholar 

  • Paige GD, Tomko DL (1991) Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. J Neurophysiol 65:1170–1182

    CAS  PubMed  Google Scholar 

  • Peterka RJ (1992) Response characteristics of the human torsional vestibulo-ocular reflex. Ann NY Acad Sci 656:877–879

    CAS  PubMed  Google Scholar 

  • Peterka RJ, Black FO, Schoenhoff MB (1990) Age-related changes in human vestibulo-ocular reflexes: Sinusoidal rotation and caloric tests. J Vestibul Res 1:49–59

    Google Scholar 

  • Pettorossi VE, Errico P, Santarelli RM (1991) Contribution of the maculo-ocular reflex to gaze stability in the rabbit. Exp Brain Res 83:366–374

    Article  CAS  PubMed  Google Scholar 

  • Rude SA, Baker JF (1988) Dynamic otolith stimulation improves the low frequency horizontal vestibulo-ocular reflex. Exp Brain Res 73:357–363

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Sando I, Takahashi H (1992) Computer-aided three-dimensional measurement of the human vestibular apparatus. Otolaryng Head Neck 107:405–409

    CAS  Google Scholar 

  • Schmid-Priscoveanu A, Straumann D, Kori A (2000) Torsional vestibulo-ocular reflex during whole-body oscillation in the upright and the supine position: I. Responses in healthy human subjects. Exp Brain Res 134:212–219

    Article  CAS  PubMed  Google Scholar 

  • Smith ST, Curthoys IS, Moore ST (1995) The human ocular torsion position response during yaw angular acceleration. Vision Res 35:2045–2055

    Article  CAS  PubMed  Google Scholar 

  • Takagi A, Sando I (1988) Computer-aided three-dimensional reconstruction and measurement of the vestibular end-organs. Otolaryng Head Neck 98:195–202

    CAS  Google Scholar 

  • Tomko DL, Wall C III, Robinson FR, Staab JP (1988) Influence of gravity on cat vertical vestibulo-ocular reflex. Exp Brain Res 69:307–314

    Article  CAS  PubMed  Google Scholar 

  • Tweed D, Cadera W, Vilis T (1990) Computing three-dimensional eye position quaternions and eye velocity from search coil signals. Vision Res 30:97–110

    Article  CAS  PubMed  Google Scholar 

  • Tweed D, Sievering D, Misslisch H, Fetter M, Zee D, Koenig E (1994) Rotational kinematics of the human vestibuloocular reflex I. Gain matrices. J Neurophysiol 72:2467–2479

    CAS  PubMed  Google Scholar 

  • Zhang X, Zakir M, Meng H, Sato H, Uchino Y (2001) Convergence of the horizontal semicircular canal and otolith afferents on cat single vestibular neurons. Exp Brain Res 140:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sasaki M, Sato H, Meng H, Bai RS, Imagawa M, Uchino Y (2002) Convergence of the anterior semicircular canal and otolith afferents on cat single vestibular neurons. Exp Brain Res 147:407–417

    Article  CAS  PubMed  Google Scholar 

  • Zupan LH, Peterka RJ, Merfeld DM (2000) Neural processing of gravito-inertial cues in humans. I. Influence of the semicircular canals following post-rotatory tilt. J Neurophysiol 84:2001–2015

    CAS  PubMed  Google Scholar 

  • Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86:209–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B.J.M. Hess for valuable discussions about the data; A. Schmid-Priscoveanu and A.A. Kori for the use of their data; A. Züger for technical assistance, and T. Schmückle and K. Weber for assistance when conducting the experiments. Supported by the Swiss National Science Foundation [3100–063669 (T.H.); 32–51938.97 SCORE A (D.S.) / 31–63465.00 (D.S.)]; Olga-Mayenfisch Foundation, Hartmann-Mueller Foundation, and the Betty and David Koetser Foundation for Brain Research, Zürich, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Bockisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bockisch, C.J., Straumann, D. & Haslwanter, T. Human 3-D aVOR with and without otolith stimulation. Exp Brain Res 161, 358–367 (2005). https://doi.org/10.1007/s00221-004-2080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2080-1

Keywords

Navigation