Skip to main content
Log in

Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study investigates whether rate of torque development (RTD) and/or torque amplitude are reflected in the movement-related potentials (MRPs) preceding and accompanying isometric activation of plantar flexor muscles. Subjects were asked to perform six different tasks involving the left ankle joint. The tasks consisted of voluntary isometric plantar flexions at three different RTDs (two fixed rates and a ‘ballistic’ task) ending at two different torque amplitudes. The main observations from the analysis of the MRPs were: 1) the readiness potentials (RP) demonstrated a statistically significant discrimination between low and high torque amplitudes; 2) the RP, the motor potentials (MP) and the movement-monitoring potentials (MMP) could be statistically differentiated among the different RTDs; and 3) in general the MRPs demonstrated an ipsilateral tendency in relation to the involved limb. The results indicate that RP is a suitable parameter for differentiation between levels of isometric plantar flexion torque and MP and MMP are sensitive to a differentiation between RTDs. The correlation between MRPs and motor tasks involving different rates of torque development and levels of torque suggests that MRPs may comprise a potential solution for programming of intended movements to be executed by systems based on neural rehabilitation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a–d
Fig. 4
Fig. 5
Fig. 6a

Similar content being viewed by others

Abbreviations

MP:

Motor potential

MMP:

Movement-monitoring potential

MRP:

Movement-related potential

RP:

Readiness potential

References

  • American Electroencephalographic Society (1994) Guideline thirteen: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113

    PubMed  Google Scholar 

  • Böcker KB, Brunia CH, Cluitmans PJ (1994) A spatio-temporal dipole model of the readiness potential in humans. II. Foot movement. Electroencephalogr Clin Neurophysiol 91:286–294

    Article  PubMed  Google Scholar 

  • Boschert J, Deecke L (1986) Handedness, footedness and finger and toe movement-related cerebral potentials. Hum Neurobiol 5:235–243

    CAS  PubMed  Google Scholar 

  • Boschert J, Hink RF, Deecke L (1983) Finger movement versus toe movement-related potentials: further evidence for supplementary motor area (SMA) participation prior to voluntary action. Exp Brain Res 52:73–80

    CAS  PubMed  Google Scholar 

  • Brouwer B, Ashby P (1992) Corticospinal projections to lower limb motoneurons in man. Exp Brain Res 89:649–654

    CAS  PubMed  Google Scholar 

  • Brunia CH (1980) What is wrong with legs in motor preparation? Prog Brain Res 54:232–236

    CAS  PubMed  Google Scholar 

  • Brunia CH, Dautzenberg JE (1986) Cortical potentials in man preceding a plantar flexion and dorsiflexion of the foot. Electroencephalogr Clin Neurophysiol Suppl 38:238–241

    CAS  PubMed  Google Scholar 

  • Brunia CH, Van den Bosch WE (1984) Movement-related slow potentials. I. A contrast between finger and foot movements in right-handed subjects. Electroencephalogr Clin Neurophysiol 57:515–527

    Article  CAS  PubMed  Google Scholar 

  • Brunia CH, Vingerhoets AJ (1980) CNV and EMG preceding a plantar flexion of the foot. Biol Psychol 11:181–191

    Article  CAS  PubMed  Google Scholar 

  • Brunia CH, Vingerhoets AJ (1981) Opposite hemisphere differences in movement related potentials preceding foot and finger flexions. Biol Psychol 13:261–269

    Article  CAS  PubMed  Google Scholar 

  • Brunia CH, Voorn FJ, Berger MP (1985) Movement related slow potentials. II. A contrast between finger and foot movements in left-handed subjects. Electroencephalogr Clin Neurophysiol 60:135–145

    Article  CAS  PubMed  Google Scholar 

  • Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M (1999) Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81:129–139

    CAS  PubMed  Google Scholar 

  • Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1996) Movement-related potentials associated with movement preparation and motor imagery. Exp Brain Res 111:429–436

    CAS  PubMed  Google Scholar 

  • Deecke L (1987) Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp 132:231–250

    CAS  PubMed  Google Scholar 

  • Deecke L, Grozinger B, Kornhuber HH (1976) Voluntary finger movement in man: cerebral potentials and theory. Biol Cybern 23:99–119

    CAS  PubMed  Google Scholar 

  • Deecke L, Bashore T, Brunia CH, Grunewald-Zuberbier E, Grunewald G, Kristeva R (1984) Movement-associated potentials and motor control. Report of the EPIC VI Motor Panel. Ann N Y Acad Sci 425:398–428

    CAS  PubMed  Google Scholar 

  • Deiber MP, Ibanez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75:233–247

    CAS  PubMed  Google Scholar 

  • Ehrsson HH, Naito E, Geyer S, Amunts K, Zilles K, Forssberg H, Roland PE (2000) Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET study. Eur J Neurosci 12:3385–3398

    Article  CAS  PubMed  Google Scholar 

  • Ikeda A, Shibasaki H (1992) Invasive recording of movement-related cortical potentials in humans. J Clin Neurophysiol 9:509–520

    CAS  PubMed  Google Scholar 

  • Ikeda A, Luders HO, Burgess RC, Shibasaki H (1992) Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements. Brain 115 (Pt 4): 1017–1043

    PubMed  Google Scholar 

  • Ikeda A, Luders HO, Burgess RC, Sakamoto A, Klem GH, Morris III HH, Shibasaki H (1995) Generator locations of movement-related potentials with tongue protrusions and vocalizations: subdural recording in human. Electroencephalogr Clin Neurophysiol 96:310–328

    Article  CAS  PubMed  Google Scholar 

  • Jentzsch I, Leuthold H (2002) Advance movement preparation of eye, foot, and hand: a comparative study using movement-related brain potentials. Brain Res Cogn Brain Res 14:201–217

    Article  PubMed  Google Scholar 

  • Juul PR, Ladouceur M, Nielsen KD (2000) Coding of lower limb muscle force generation in associated EEG movement related potentials: preliminary studies toward a feed-forward control of FES-assisted walking. Sinkjaer T, Popovic D, Struijk JJ (ed) Aalborg University, Denmark. Conference Proceeding, pp 335–337

    Google Scholar 

  • Klem, GH, Lüders, HO, Jasper, HH, Elger, C (1999) The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol Suppl 52:3-6.

    CAS  PubMed  Google Scholar 

  • Kornhuber HH, Deecke L (1965) Hirnpotentialanderungen bei willkurbewegungen und passiven bewegungen des menschen. Bereitschaftspotential und eafferente potential. Pflugers Arch 284:1–17

    CAS  Google Scholar 

  • Kristeva R, Cheyne D, Lang W, Lindinger G, Deecke L (1990) Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. Electroencephalogr Clin Neurophysiol 75:410–418

    Article  CAS  PubMed  Google Scholar 

  • Kristeva R, Cheyne D, Deecke L (1991) Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroencephalogr Clin Neurophysiol 81:284–298

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Chang KH, Roh JK (1999) Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage 9:117–123

    Article  CAS  PubMed  Google Scholar 

  • Mayer M, Botzel K, Paulus W, Plendl H, Prockl D, Danek A (1995) Movement-related cortical potentials in persistent mirror movements. Electroencephalogr Clin Neurophysiol 95:350–358

    Article  CAS  PubMed  Google Scholar 

  • Nakajima I, Tanaka Y, Uchida A, Sakai T, Akasaka M, Mori A, Sumino R (1991) Cortical potentials associated with voluntary biting movement in humans. Neurosci Res 10:285–289

    Article  CAS  PubMed  Google Scholar 

  • Popovic DB, Sinkjaer T (2000) Control of movement for the physically disabled. Springer, London, p 481

  • Ray WJ, Slobounov S, Mordkoff JT, Johnston J, Simon RF (2000) Rate of force development and the lateralized readiness potential. Psychophysiology 37:757–765

    Article  CAS  PubMed  Google Scholar 

  • Rearick MP, Slobounov SM (2000) Negative cortical d.c. shifts associated with coordination and control in a prehensile force task. Exp Brain Res 132:195–202

    Article  CAS  PubMed  Google Scholar 

  • Rijntjes M, Dettmers C, Buchel C, Kiebel S, Frackowiak RS, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19:8043–8048

    CAS  PubMed  Google Scholar 

  • Rohrbaugh JW, Syndulko K, Lindsley DB (1976) Brain wave components of the contingent negative variation in humans. Science 191:1055–1057

    CAS  PubMed  Google Scholar 

  • Shibasaki H, Barrett G, Halliday E, Halliday AM (1980) Components of the movement-related cortical potential and their scalp topography. Electroencephalogr Clin Neurophysiol 49:213–226

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki H, Barrett G, Halliday E, Halliday AM (1981) Cortical potentials associated with voluntary foot movement in man. Electroencephalogr Clin Neurophysiol 52:507–516

    Article  CAS  PubMed  Google Scholar 

  • Slobounov SM, Ray WJ (1998) Movement-related potentials with reference to isometric force output in discrete and repetitive tasks. Exp Brain Res 123:461–473

    Article  CAS  PubMed  Google Scholar 

  • Slobounov S, Tutwiler R, Rearick M, Challis JH (1999) EEG correlates of finger movements with different inertial load conditions as revealed by averaging techniques. Clin Neurophysiol 110:1764–1773

    Article  CAS  PubMed  Google Scholar 

  • Slobounov S, Rearick M, Chiang H (2000a) EEG correlates of finger movements as a function of range of motion and pre-loading conditions. Clin Neurophysiol 111:1997–2007

    Article  CAS  PubMed  Google Scholar 

  • Slobounov SM, Rearick MP, Simon RF, Johnston JA (2000b) Movement-related potentials are task or end-effector dependent: evidence from a multifinger experiment. Exp Brain Res 135:106–116

    Article  CAS  PubMed  Google Scholar 

  • Slobounov S, Johnston J, Chiang H, Ray W (2002) Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment. Clin Neurophysiol 113:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Tamas LB, Shibasaki H (1985) Cortical potentials associated with movement: a review. J Clin Neurophysiol 2:157–171

    CAS  PubMed  Google Scholar 

  • Terada K, Ikeda A, Yazawa S, Nagamine T, Shibasaki H (1999) Movement-related cortical potentials associated with voluntary relaxation of foot muscles. Clin Neurophysiol 110:397–403

    Article  CAS  PubMed  Google Scholar 

  • Vidailhet M, Atchison PR, Stocchi F, Thompson PD, Rothwell JC, Marsden CD (1995) The bereitschaftspotential preceding stepping in patients with isolated gait ignition failure. Mov Disord 10:18–21

    CAS  PubMed  Google Scholar 

  • Wild-Wall N, Sangals J, Sommer W, Leuthold H (2003) Are fingers special? Evidence about movement preparation from event- related brain potentials. Psychophysiology 40:7–16

    Article  PubMed  Google Scholar 

  • Wohlert AB (1993) Event-related brain potentials preceding speech and nonspeech oral movements of varying complexity. J Speech Lang Hear Res 36:897–905

    CAS  Google Scholar 

  • Yoshida K, Kaji R, Hamano T, Kohara N, Kimura J, Iizuka T (1999) Cortical distribution of Bereitschaftspotential and negative slope potential preceding mouth-opening movements in humans. Arch Oral Biol 44:183–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank the financial support provided by Vale do Paraíba University (UNIVAP) and the Center for Sensory-Motor Interaction (SMI) from the Department of Health Science & Technology (HST) at Aalborg University (AAU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Feix do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

do Nascimento, O.F., Nielsen, K.D. & Voigt, M. Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials. Exp Brain Res 160, 154–165 (2005). https://doi.org/10.1007/s00221-004-1996-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1996-9

Keywords

Navigation