Skip to main content

A Novel Brain-Computer Interface for Chronic Stroke Patients

  • Chapter
Brain-Computer Interface Research

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 6))

Abstract

We present a novel brain-computer interface for neuromodulation that leads to long lasting cortical plasticity. The system entails in recording the movement-related cortical potential (MRCP) as a subject imagines a dorsiflexion task and triggering an electrical stimulator to generate a single stimulus to the target nerve. This system has been tested on healthy subjects to demonstrate that an artificially generated signal (the peripheral afferent volley) can interact with a physiologically generated signal (the MRCP) in humans, leading to plastic changes. Further, in a group of 13 chronic stroke patients, the intervention also induced functional improvements within only three sessions. In this chapter, we outline the protocol in detail and discuss the potential for artificially inducing cortical plasticity in patients (neuromodulation). In these applications, the intention to move can be detected without a cue directly from the EEG traces. We have commenced to identify force and speed characteristics from single MRCPs, and our pilot data reveals that, if the nerve stimulation characteristics match the imagined movement, plasticity is further enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Celnik, P., Paik, N.J., Vandermeeren, Y., Dimyan, M., Cohen, L.G.: Effects of Combined Peripheral Nerve Stimulation and Brain Polarization on Performance of a Motor Sequence Task After Chronic Stroke. Stroke 40(5), 1764–1771 (2009)

    Article  Google Scholar 

  2. Lindenberg, R., Zhu, L.L., Schlaug, G.: Combined central and peripheral stimulation to facilitate motor recovery after stroke: the effect of number of sessions on outcome. Neurorehabil. Neural Repair 26(5), 479–483 (2012)

    Article  Google Scholar 

  3. Cramer, S.C., Mark, A., Barquist, K., Nhan, H., Stegbauer, K.C., Price, R., et al.: Motor cortex activation is preserved in patients with chronic hemiplegic stroke. Ann. Neurol. 52(5), 607–616 (2002)

    Article  Google Scholar 

  4. Mrachacz-Kersting, N., Kristensen, S.R., Niazi, I.K., Farina, D.: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J. Physiol. 590(pt. 7), 1669–1682 (2012)

    Google Scholar 

  5. Niazi, I.K., Mrachacz-Kersting, N., Jiang, N., Dremstrup, K., Farina, D.: Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 20(4), 595–604 (2012)

    Article  Google Scholar 

  6. Lu, M.K., Arai, N., Tsai, C.H., Ziemann, U.: Movement related cortical potentials of cued versus self-initiated movements: Double dissociated modulation by dorsal premotor cortex versus supplementary motor area rTMS. Hum. Brain Mapp. 33(4), 824–839 (2012)

    Article  Google Scholar 

  7. Kornhuber, H.H., Deecke, L.: Changes in the brain potential in voluntary movements and passive movements in man: Readiness potential and reafferent potential. Pflugers Arch. Gesamte Physiol. Menschen Tiere 284, 1–17 (1965)

    Article  Google Scholar 

  8. Dick, J.P.R., Rothwell, J.C., Day, B.L., Cantello, R., Buruma, O., Gioux, M., et al.: The Bereitschafts potential is abnormal in Parkinson’s disease. Brain 112(1), 233–244 (1989)

    Article  Google Scholar 

  9. Filipoviç, S.R., Sterniç, N., Svetel, M., Dragaseviç, N., Lecic, D., Kostiç, V.S.: Bereitschaftspotential in depressed and non-depressed patients with Parkinson’s disease. Mov. Disord. 16(2), 294–300 (2001)

    Article  Google Scholar 

  10. Hamano, T., Luders, H.O., Ikeda, A., Collura, T.F., Comair, Y.G., Shibasaki, H.: The cortical generators of the contingent negative variation in humans: a study with subdural electrodes. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 104(3), 257–268 (1997)

    Article  Google Scholar 

  11. Ikeda, A., Shibasaki, H., Kaji, R., Terada, K., Nagamine, T., Honda, M., et al.: Dissociation between contingent negative variation (CNV) and Bereitschaftspotential (BP) in patients with parkinsonism. Electroencephalogr. Clin. Neurophysiol. 102(2), 142–151 (1997)

    Article  Google Scholar 

  12. Ikeda, A., Shibasaki, H., Kaji, R., Terada, K., Nagamine, T., Honda, M., et al.: Abnormal sensorimotor integration in writer’s cramp: study of contingent negative variation. Mov. Disord. 11(6), 683–690 (1996)

    Article  Google Scholar 

  13. Kornhuber, H.H., Deecke, L.: Changes in the brain potential in voluntary movments and passive movements in man: Readiness potential and reafferent potentials. Pflugers Arch. Gesamte Physiol. Menschen Tiere 284, 1–17 (1965)

    Article  Google Scholar 

  14. Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.C., Winter, A.L.: Contingent Negative Variation: An Electric Sign of Sensorimotor Association and Expectancy in the Human Brain. Nature 203, 380–384 (1964)

    Article  Google Scholar 

  15. Kristeva, R., Keller, E., Deecke, L., Kornhuber, H.H.: Cerebral potentials preceding unilateral and simultaneous bilateral finger movements. Electroencephalography and Clinical Neurophysiology 47(2), 229–238 (1979)

    Article  Google Scholar 

  16. Gu, Y., do Nascimento, O., Lucas, M.F., Farina, D.: Identification of task parameters from movement-related cortical potentials. Medical and Biological Engineering and Computing 47(12), 1257–1264 (2009)

    Article  Google Scholar 

  17. do Nascimento, O.F., Farina, D.: Movement-related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion. IEEE Trans. Biomed. Eng. 55(11), 2675–2678 (2008)

    Article  Google Scholar 

  18. Nascimento, O., Nielsen, K., Voigt, M.: Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions. Experimental Brain Research 171(1), 78–90 (2006)

    Article  Google Scholar 

  19. do Nascimento, O.F., Nielsen, K.D., Voigt, M.: Influence of directional orientations during gait initiation and stepping on movement-related cortical potentials. Behav. Brain Res. 161(1), 141–154 (2005)

    Article  Google Scholar 

  20. do Nascimento, O.F., Nielsen, K.D., Voigt, M.: Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials. Exp. Brain Res. 160(2), 154–165 (2005)

    Article  Google Scholar 

  21. Nielsen, J.B., Sinkjaer, T.: Afferent feedback in the control of human gait. J. Electromyogr. Kinesiol. 12(3), 213–217 (2002)

    Article  Google Scholar 

  22. Grey, M.J., Mazzaro, N., Nielsen, J.B., Sinkjaer, T.: Ankle extensor proprioceptors contribute to the enhancement of the soleus EMG during the stance phase of human walking. Canadian Journal of Physiology and Pharmacology [NLM - MEDLINE] 82(8-9), 610–617 (2004)

    Article  Google Scholar 

  23. Sinkjaer, T., Andersen, J.B., Ladouceur, M., Christensen, L.O., Nielsen, J.B.: Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J. Physiol. 523(pt. 3), 817–827 (2000)

    Article  Google Scholar 

  24. af Klint, R., Nielsen, J.B., Cole, J., Sinkjaer, T., Grey, M.J.: Within-step modulation of leg muscle activity by afferent feedback in human walking. J. Physiol. (Lond) 586(19), 4643–4648 (2008)

    Article  Google Scholar 

  25. af Klint, R., Cronin, N.J., Ishikawa, M., Sinkjaer, T., Grey, M.J.: Afferent contribution to locomotor muscle activity during unconstrained overground human walking: an analysis of triceps surae muscle fascicles. J. Neurophysiol. 103(3), 1262–1274 (2010)

    Article  Google Scholar 

  26. Stubbs, P.W., Mrachacz-Kersting, N.: Short-latency crossed inhibitory responses in the human soleus muscle. J. Neurophysiol. 102(6), 3596–3605 (2009)

    Article  Google Scholar 

  27. Stubbs, P.W., Nielsen, J.F., Sinkjaer, T., Mrachacz-Kersting, N.: Phase modulation of the short-latency crossed spinal response in the human soleus muscle. J. Neurophysiol. 105(2), 503–511 (2011)

    Article  Google Scholar 

  28. Dietz, V., Sinkjaer, T.: Spastic movement disorder: impaired reflex function and altered muscle mechanics. The Lancet Neurology 6(8), 725–733 (2007)

    Article  Google Scholar 

  29. Pavlides, C., Miyashita, E., Asanuma, H.: Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J. Neurophysiol. 70(2), 733–741 (1993)

    Google Scholar 

  30. Mauguiere, F.: Somatosensory evoked potentials: normal responses, abnormal waveforms and clinical applications in neurological diseases. In: Niedermeyer, E. (ed.) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Williams and Wilkins, Baltimore (1999)

    Google Scholar 

  31. Tinazzi, M., Fiaschi, A., Mauguiere, F., Manganotti, P., Polo, A., Bonato, C., et al.: Effects of voluntary contraction on tibial nerve somatosensory evoked potentials: gating of specific cortical responses. Neurology 50(6), 1655–1661 (1998)

    Article  Google Scholar 

  32. Tsumoto, T., Nakamura, S., Iwama, K.: Pyramidal tract control over cutaneous and kinesthetic sensory transmission in the cat thalamus. Exp. Brain Res. 22(3), 281–294 (1975)

    Article  Google Scholar 

  33. Tinazzi, M., Zanette, G., La Porta, F., Polo, A., Volpato, D., Fiaschi, A., et al.: Selective gating of lower limb cortical somatosensory evoked potentials (SEPs) during passive and active foot movements. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 104(4), 312–321 (1997)

    Article  Google Scholar 

  34. Voigt, M., de Zee, M., Sinkjaer, T.: A fast servo-controlled hydraulic device for the study of muscle mechanical and reflex properties in humans. In: Proceedings of the 17th Congress of the International Society of Biomechanics Calgary, p. 578 (1999)

    Google Scholar 

  35. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory, 1st edn. Lawrence Erlbaum Associates Inc., Mahwah (1949)

    Google Scholar 

  36. Bliss, T.V.P., Lømo, T.: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology 232(2), 331–356 (1973)

    Google Scholar 

  37. Stefan, K., Kunesch, E., Benecke, R., Cohen, L.G., Classen, J.: Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. Journal of Physiology 543(pt. 2), 699–708 (2002)

    Article  Google Scholar 

  38. Ziemann, U., Paulus, W., Nitsche, M.A., Pascual-Leone, A., Byblow, W.D., Berardelli, A., et al.: Consensus: Motor cortex plasticity protocols. Brain Stimulation 1(3), 164–182 (2008)

    Article  Google Scholar 

  39. Ridding, M.C., Ziemann, U.: Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 588(pt. 13), 2291–2304 (2010)

    Article  Google Scholar 

  40. Francis, S., Lin, X., Aboushoushah, S., White, T.P., Phillips, M., Bowtell, R., et al.: fMRI analysis of active, passive and electrically stimulated ankle dorsiflexion. NeuroImage 44(2), 469–479 (2009)

    Article  Google Scholar 

  41. Mrachacz-Kersting, N., Niazi, I.K., Jiang, N., Pavlovic, A., Radovanovic, S., et al.: A novel brain-computer interface for chronic stroke patients. In: ICNR Conference, Toledo, Spain (November 2012)

    Google Scholar 

  42. Gu, Y., Dremstrup, K., Farina, D.: Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clin. Neurophysiol. 120(8), 1596–1600 (2009)

    Article  Google Scholar 

  43. Gu, Y., Farina, D., Murguialday, A.R., Dremstrup, K., Birbaumer, N.: Comparison of movement related cortical potential in healthy people and amyotrophic lateral sclerosis patients. Front. Neurosci. 7, 65 (2013)

    Article  Google Scholar 

  44. Jochumsen, M., Niazi, I.K., Mrachacz-Kersting, N., Farina, D., Dremstrup, K.: Detection and classification of movement-related cortical potentials associated with task force and speed. J. Neural Eng. (5), 056015 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mrachacz-Kersting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mrachacz-Kersting, N., Jiang, N., Dremstrup, K., Farina, D. (2014). A Novel Brain-Computer Interface for Chronic Stroke Patients. In: Guger, C., Allison, B., Leuthardt, E. (eds) Brain-Computer Interface Research. Biosystems & Biorobotics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54707-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54707-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54706-5

  • Online ISBN: 978-3-642-54707-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics