Skip to main content
Log in

Rapidly activated microglial cells in the preoptic area may play a role in the generation of hyperthermia following occlusion of the middle cerebral artery in the rat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Postischemic hyperthermia occurs after the occlusion of the middle cerebral artery (MCAO) with an intraluminal filament in rats. The cause of hyperthermia is presumed to be damage to the preoptic area, which is one of the temperature-regulatory centers of the hypothalamus. In the present study, reactions of microglial cells and astrocytes in the preoptic area were examined during the first 6 h following transient MCAO. Microglial cells and astrocytes were visualized with immunohistochemistry using antibodies against the CR3 complement receptor and the glial fibrillary acidic protein, respectively. One hour after the occlusion, activated microglial cells were observed in both the medial and lateral preoptic areas ipsilaterally, and in the medial preoptic area contralateral to the infarct. Following reperfusion, the activation of microglial cells decreased in the medial preoptic area of both hemispheres, and in the lateral preoptic area there was a loss of immunoreactive microglial cells. Fragmentation of astrocytic processes was detected in the lateral preoptic area, while in the ipsilateral medial preoptic area a moderate swelling was observed. Immunohistochemistry with an antibody against interleukin-1β (IL-1β) revealed scattered immunoreactive cells in both the ipsilateral and the contralateral medial preoptic area 2 h after the MCAO. Our results show that microglial activation in the preoptic area coincides with postischemic hyperthermia. However, an exclusive role for IL-1β in the generation of hyperthermia is unlikely, and other factors are probably also responsible for postischemic hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A-J.
Fig. 3A-E.

Similar content being viewed by others

References

  • Abraham H, Lazar Gy (2000) Early microglial reaction following mild forebrain ischemia induced by common carotid artery occlusion in rats. Brain Res 862:63–73

    Article  CAS  PubMed  Google Scholar 

  • Abraham H, Losonczy A, Czeh G, Lazar Gy (2001) Rapid activation of microglial cells by hypoxia, kainic acid, and potassium ions in slice preparations of the rat hippocampus. Brain Res 906:115–126

    Article  CAS  PubMed  Google Scholar 

  • Abraham H, Somogyvari-Vigh A, Maderdrut JL, Vigh S, Arimura A (2002) Filament size influences temperature changes and brain damage following middle cerebral artery occlusion in rats. Exp Brain Res 142:131–138

    Article  CAS  PubMed  Google Scholar 

  • Alheim K, Chai Z, Fantuzzi G, Hasanvan H, Malinowsky D, Di Santo E, Ghezzi P, Dinarello CA, Bartfai T (1997) Hyperresponsive febrile reactions to interleukin (IL)-1alpha and IL-1beta, and altered brain cytokine mRNA and serum cytokine levels, in IL-1beta-deficient mice. Proc Natl Acad Sci USA 94:2681–2686

    Article  CAS  PubMed  Google Scholar 

  • Ambach G, Kivovics P, Palkovits M (1978) The arterial and venous blood supply of the preoptic region in the rat. Acta Morphol Acad Sci Hung 26:21–41

    CAS  PubMed  Google Scholar 

  • Andrews RJ (1991) Transhemispheric diaschisis. A review and comment. Stroke 22:943–949

    CAS  PubMed  Google Scholar 

  • Azzimondi G, Bassein L, Nonino F, Fiorani L, Vignatelli L, Re G, D'Alessandro R (1995) Fever in acute stroke worsens prognosis. A prospective study. Stroke 26:2040–2043

    CAS  PubMed  Google Scholar 

  • Banati RB, Graeber MB (1994) Surveillance, intervention and cytotoxicity: Is there a protective role of microglia? Dev Neurosci 16:114–127

    CAS  PubMed  Google Scholar 

  • Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476

    CAS  PubMed  Google Scholar 

  • Blatteis CM, Sehic E (1998) Cytokines and fever. Ann NY Acad Sci 840:608–618

    CAS  PubMed  Google Scholar 

  • Blatteis CM, Xin L, Quan N (1994) Neuromodulation of fever. A possible role for substance P. Ann NY Acad Sci 741:162–173

    CAS  PubMed  Google Scholar 

  • Boysen G, Christensen H (2001) Stroke severity determines body temperature in acute stroke. Stroke 32:413–417

    CAS  PubMed  Google Scholar 

  • Buchkremer-Ratzmann I, August M, Hagemann G, Witte OW (1998) Epileptiform discharges to extracellular stimuli in rat neocortical slices after photothrombotic infarction. J Neurol Sci 156:133–137

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chopp M, Welch KM (1991) Effect of mild hyperthermia on the ischemic infarct volume after middle cerebral artery occlusion in the rat. Neurology 41:1133–1135

    CAS  PubMed  Google Scholar 

  • Davies CA, Loddick SA, Stroemer RP, Hunt J, Rothwell NJ (1998) An integrated analysis of the progression of cell responses induced by permanent focal middle cerebral artery occlusion in the rat. Exp Neurol 154:199–212

    Article  CAS  PubMed  Google Scholar 

  • Davies CA, Loddick SA, Toulmond S, Stroemer RP, Hunt J, Rothwell NJ (1999) The progression and topographic distribution of interleukin-1-beta expression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 19:87–89

    CAS  PubMed  Google Scholar 

  • Domann R, Hagemann G, Kraemer M, Freund HJ, Witte OW (1993) Electrophysiological changes in the surrounding brain tissue of photochemically induced cortical infarcts in the rat. Neurosci Lett 155:69–72

    Article  CAS  PubMed  Google Scholar 

  • Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, Chen S, Chopp M (1993) Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol 142:623–635

    CAS  PubMed  Google Scholar 

  • Gehrmann J, Kreutzberg GW (1995) Microglia in experimental neuropathology. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 883–904

  • Gehrmann J, Bonnekoh P, Miyazawa T, Hossmann KA, Kreutzberg GW (1992) Immunocytochemical study of an early microglial activation in ischemia. J Cereb Blood Flow Metab 12:257–269

    Google Scholar 

  • Gourmala NG, Limonta S, Bochelen D, Sauter A, Boddeke HW (1999) Localization of macrophage inflammatory protein: macrophage inflammatory protein-1 expression in rat brain after peripheral administration of lipopolysaccharide and focal cerebral ischemia. Neuroscience 88:1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Gregersen R, Lambertsen K, Finsen B (2000) Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:53–65

    CAS  PubMed  Google Scholar 

  • Hellon RF (1972) Temperature-sensitive neurons in the brain stem: their responses to brain temperature at different ambient temperatures. Pflugers Arch 335:323–334

    CAS  PubMed  Google Scholar 

  • Herz RC, Kasbergen CM, Hillen B, Versteeg DH, Wildt DJ de (1998) Rat middle cerebral artery occlusion by an intraluminal thread compromises collateral blood flow. Brain Res 791:223–228

    Article  CAS  PubMed  Google Scholar 

  • Hillhouse EW, Kida S, Iannotti F (1998) Middle cerebral artery occlusion in the rat causes a biphasic production of immunoreactive interleukin-1beta in the cerebral cortex. Neurosci Lett 249:177–179

    Article  CAS  PubMed  Google Scholar 

  • Hori T, Shibata M, Nakashima T, Yamasaki M, Asami A, Asami T, Koga H (1988) Effects of interleukin-1 and arachidonate on the preoptic and anterior hypothalamic neurons. Brain Res Bull 20:75–82

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Haddad GG (1993) Short periods of hypoxia activate a K+ current in central neurons. Brain Res 614:352–356

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Walz W (2000) The initiation of microglial response. Brain Pathol 10:137–143

    CAS  PubMed  Google Scholar 

  • Kettenmann H, Hoppe D, Gottmann K, Banati R, Kreutzberg GW (1990) Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res 26:278–287

    CAS  PubMed  Google Scholar 

  • Kozak W, Zheng H, Conn CA, Soszynski D, Ploeg LH van der, Kluger MJ (1995) Thermal and behavioral effects of lipopolysaccharide and influenza in interleukin-1beta-deficient mice. Am J Physiol 269:R969–977

    CAS  PubMed  Google Scholar 

  • Lehrmann E, Christensen T, Zimmer J, Diemer NH, Finsen B (1997) Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion. J Comp Neurol 386:461–476

    Google Scholar 

  • Li F, Omae T, Fisher M (1999) Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke 30:2464–2471

    CAS  PubMed  Google Scholar 

  • Long NC, Otterness I, Kunkel SL, Vander AJ, Kluger MJ (1990) Roles of interleukin 1 beta and tumor necrosis factor in lipopolysaccharide fever in rats. Am J Physiol 259:724–728

    Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    CAS  PubMed  Google Scholar 

  • Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T, Hori M, Matsumoto M (2000) Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31:1735–1743

    CAS  PubMed  Google Scholar 

  • Memezawa H, Minamisawa H, Smith ML, Siesjo BK (1992) Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res 89:67–78

    CAS  PubMed  Google Scholar 

  • Memezawa H, Zhao Q, Smith ML, Siesjo BK (1995) Hyperthermia nullifies the ameliorating effect of dizocilpine maleate (MK-801) in focal cerebral ischemia. Brain Res 670:48–52

    Article  CAS  PubMed  Google Scholar 

  • Morioka T, Kalehua AN, Streit WJ (1991) The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 11:966–973

    CAS  PubMed  Google Scholar 

  • Morioka T, Kalehua AN, Streit WJ (1993) Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J Comp Neurol 327:123–132

    CAS  PubMed  Google Scholar 

  • Myers RD, Lopez-Valpuesta FJ, Minano FJ, Wooten MH, Barwick VS, Wolpe SD (1994) Fever and feeding in the rat: actions of intrahypothalamic interleukin-6 compared with macrophage inflammatory protein-1 beta (MIP-1 beta). J Neurosci Res 39:31–37

    CAS  PubMed  Google Scholar 

  • Nallet H, MacKenzie ET, Roussel S (1999) The nature of penumbral depolarizations following focal cerebral ischemia in the rat. Brain Res 842:148–158

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Cooper AJ, Goldman SA (1995) Gap junctions are required for the propagation of spreading depression. J Neurobiol 28:433–444

    CAS  PubMed  Google Scholar 

  • Neumann-Haefelin T, Witte OW (2000) Periinfarct and remote excitability changes after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 20:45–52

    CAS  PubMed  Google Scholar 

  • Neumann-Haefelin T, Hagemann G, Witte OW (1995) Cellular correlates of neuronal hyperexcitability in the vicinity of photochemically induced cortical infarcts in rats in vitro. Neurosci Lett 193:101–104

    Article  CAS  PubMed  Google Scholar 

  • Pearce B, Wilkin GP (1995) Eicosanoid, purine, and hormon receptors. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 377–384

  • Reglodi D, Somogyvari-Vigh A, Maderdrut JL, Vigh S, Arimura A (2000) Postischemic spontaneous hyperthermia and its effects in middle cerebral artery occlusion in the rat. Exp Neurol 163:399–407

    CAS  PubMed  Google Scholar 

  • Reid KH, Marrannes R, Wauquier A (1988) Spreading depression and central nervous system pharmacology. J Pharmacol Methods 19:1–21

    Article  CAS  PubMed  Google Scholar 

  • Reith J, Jorgensen HS, Pedersen PM, Nakayama H, Raaschou HO, Jeppesen LL, Olsen TS (1996) Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet 347:422–425

    CAS  PubMed  Google Scholar 

  • Rubin G, Levy EI, Scarrow AM, Firlik AD, Karakus A, Wechsler L, Jungreis CA, Yonas H (2000) Remote effects of acute ischemic stroke: a xenon CT cerebral blood flow study. Cerebrovasc Dis 10:221–228

    Article  CAS  PubMed  Google Scholar 

  • Rupalla K, Allegrini PR, Sauer D, Wiessner C (1998) Time course of microglial activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol 96:172–178

    Article  CAS  PubMed  Google Scholar 

  • Sairanen TR, Lindsberg PJ, Brenner M, Siren AL (1997) Global forebrain ischemia results in differential cellular expression of interleukin-1beta (IL-1beta) and its receptor at mRNA and protein level. J Cereb Blood Flow Metab 17:1107–1120

    CAS  PubMed  Google Scholar 

  • Scremin OU (1970) The vascular anatomy of the rat's hypothalamus in stereotaxic coordinates. J Comp Neurol 139:31–52

    CAS  PubMed  Google Scholar 

  • Shibata M, Hori T, Kiyohara T, Nakashima T, Osaka T (1983) Impairment of thermoregulatory cooling behavior by single cortical spreading depression in the rat. Physiol Behav 30:599–605

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Hori T, Kiyohara T, Nakashima T (1984) Activity of hypothalamic thermosensitive neurons during cortical spreading depression in the rat. Brain Res 308:255–262

    Article  CAS  PubMed  Google Scholar 

  • Stoll G, Jander S, Schroeter M (1998) Inflammation and glial response in ischemic brain lesions. Prog Neurobiol 56:149–171

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ (1995) Microglial cells. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 85–96

  • Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1:301–307

    CAS  PubMed  Google Scholar 

  • Swanson LW (1976) An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167:227–256

    CAS  PubMed  Google Scholar 

  • Szelenyi Z, Bartho L, Szekely M, Romanovsky AA (1994). Cholecystokinin octapeptide (CCK-8) injected into a cerebral ventricle induces a fever-like thermoregulatory response mediated by type B CCK-receptors in the rat. Brain Res 638:69–77

    Article  CAS  PubMed  Google Scholar 

  • Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischemia in the rat. 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60

    CAS  PubMed  Google Scholar 

  • Van Dam AM, Bauer J, Tilders FJ, Berkenbosch F (1995) Endotoxin-induced appearance of immunoreactive interleukin-1 beta in ramified microglia in rat brain: a light- and electron-microscopic study. Neuroscience 65:815–826

    Article  PubMed  Google Scholar 

  • Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504

    CAS  PubMed  Google Scholar 

  • Zhang Z, Chopp M, Powers C (1997) Temporal profile of microglial response following transient (2 h) middle cerebral artery occlusion. Brain Res 744:189–198

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chopp M, Goussev A, Powers C (1998) Cerebral vessels express interleukin 1beta after focal cerebral ischemia. Brain Res 784:210–217

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Memezawa H, Smith ML, Siesjo BK (1994) Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament. Brain Res 649:253–259

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by funds from the Kaken American Foundation and Interneuron Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajnalka Ábrahám.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ábrahám, H., Somogyvári-Vigh, A., Maderdrut, J.L. et al. Rapidly activated microglial cells in the preoptic area may play a role in the generation of hyperthermia following occlusion of the middle cerebral artery in the rat. Exp Brain Res 153, 84–91 (2003). https://doi.org/10.1007/s00221-003-1572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1572-8

Keywords

Navigation