Skip to main content
Log in

The Stochastic Heat Equation with Multiplicative Lévy Noise: Existence, Moments, and Intermittency

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the stochastic heat equation (SHE) \(\partial _t u = \frac{1}{2} \Delta u + \beta u \xi \) driven by a multiplicative Lévy noise \(\xi \) with positive jumps and coupling constant \(\beta >0\), in arbitrary dimension \(d\ge 1\). We prove the existence of solutions under an optimal condition if \(d=1,2\) and a close-to-optimal condition if \(d\ge 3\). Under an assumption that is general enough to include stable noises, we further prove that the solution is unique. By establishing tight moment bounds on the multiple Lévy integrals arising in the chaos decomposition of u, we further show that the solution has finite pth moments for \(p>0\) whenever the noise does. Finally, for any \(p>0\), we derive upper and lower bounds on the moment Lyapunov exponents of order p of the solution, which are asymptotically sharp in the limit as \(\beta \rightarrow 0\). One of our most striking findings is that the solution to the SHE exhibits a property called strong intermittency (which implies moment intermittency of all orders \(p>1\) and pathwise mass concentration of the solution), for any non-trivial Lévy measure, at any disorder intensity \({\beta }>0\), in any dimension \(d\ge 1\). This behavior contrasts with that observed for the SHE on \(\mathbb {Z}^d\) and for the SHE on \(\mathbb {R}^d\) with Gaussian noise, for which intermittency does not occur in high dimensions for small \(\beta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahn, H. S.: Nonstationary Anderson model with a Lévy random potential. ProQuest LLC, Ann Arbor, MI, (1992). Thesis (Ph.D.)–University of California, Irvine

  2. Ahn, H.S., Carmona, R.A., Molchanov, S.A.: Nonstationary Anderson model with Lévy potential. In: Stochastic Partial Differential Equations and Their Applications (Charlotte, NC, 1991), volume 176 of Lect. Notes Control Inf. Sci., pp. 1–11. Springer, Berlin (1992)

  3. Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension \(1+ 1\). Ann. Probab. 42(3), 1212–1256 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension \(1+1\). Ann. Probab. 42(3), 1212–1256 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Aziznejad, S., Fageot, J.: Wavelet analysis of the Besov regularity of Lévy white noise. Electron. J. Probab. 25, 38 (2020)

    MATH  Google Scholar 

  7. Bakhtin, Y., Seo, D.: Localization of directed polymers in continuous space. Electron. J. Probab. 25(142), 56 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Balan, R.M.: SPDEs with \(\alpha \)-stable Lévy noise: a random field approach. Int. J. Stoch. Anal., pages Art. ID 793275, 22 (2014)

  9. Bates, E., Chatterjee, S.: The endpoint distribution of directed polymers. Ann. Probab. 48(2), 817–871 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Berger, Q., Lacoin, H.: The high-temperature behavior for the directed polymer in dimension \(1+2\). Ann. Inst. Henri Poincaré, Probab. Stat. 53(1), 430–450 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Berger, Q., Lacoin, H.: Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift. J. Inst. Math. Jussieu 17(2), 305–346 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Berger, Q., Lacoin, H.: The scaling limit of the directed polymer with power-law tail disorder. Commun. Math. Phys. 386(2), 1051–1105 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Berger, Q., Lacoin, H.: The continuum directed polymer in Lévy noise. J. École Polytech. Tome 9, 213–280 (2022)

    MATH  Google Scholar 

  14. Berger, Q., Toninelli, F.L.: On the critical point of the random walk pinning model in dimension \(d=3\). Electron. J. Probab. 15(21), 654–683 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Bertin, P.: Very strong disorder for the parabolic Anderson model in low dimensions. Indag. Math. (N.S.) 26(1), 50–63 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Bertini, L., Cancrini, N.: The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78(5–6), 1377–1401 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Bertini, L., Cancrini, N.: The two-dimensional stochastic heat equation: renormalizing a multiplicative noise. J. Phys. A 31(2), 615–622 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Bichteler, K., Jacod, J.: Random measures and stochastic integration. In: Kallianpur, G. (eds) Theory and application of random fields. Lecture Notes in Control and Information Sciences, vol 49. Springer, Berlin, Heidelberg (1983)

  20. Birkner, M., Sun, R.: Disorder relevance for the random walk pinning model in dimension 3. Ann. Inst. Henri Poincaré Probab. Stat. 47(1), 259–293 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Bolthausen, E.: A note on the diffusion of directed polymers in a random environment. Commun. Math. Phys. 123(4), 529–534 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. Duke Math. J. 165(3), 563–624 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Borodin, A., Corwin, I., Remenik, D.: Log-gamma polymer free energy fluctuations via a Fredholm determinant identity. Commun. Math. Phys. 324(1), 215–232 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Bröker, Y., Mukherjee, C.: Localization of the Gaussian multiplicative chaos in the Wiener space and the stochastic heat equation in strong disorder. Ann. Appl. Probab. 29(6), 3745–3785 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Caravenna, F., Sun, R., Zygouras, N.: On the moments of the \((2+1)\)-dimensional directed polymer and stochastic heat equation in the critical window. Commun. Math. Phys. 372(2), 385–440 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Caravenna, F., Sun, R., Zygouras, N.: The critical 2d stochastic heat flow. arXiv:2109.03766 (2021), to appear in Inventiones Math.

  27. Carmona, P., Hu, Y.: On the partition function of a directed polymer in a Gaussian random environment. Probab. Theory Relat. Fields 124(3), 431–457 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Carmona, P., Hu, Y.: Strong disorder implies strong localization for directed polymers in a random environment. ALEA Lat. Am. J. Probab. Math. Stat. 2, 217–229 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Carmona, R.A., Molchanov, S.A.: Parabolic Anderson problem and intermittency. Mem. Am. Math. Soc. 108(518), viii+125 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Chatterjee, S., Zeitouni, O.: Thresholds for detecting an anomalous path from noisy environments. Ann. Appl. Probab. 28(5), 2635–2663 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Chen, L., Dalang, R.C.: Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions. Ann. Probab. 43(6), 3006–3051 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Chen, L., Khoshnevisan, D., Nualart, D., Pu, F.: Spatial ergodicity for SPDEs via Poincaré-type inequalities. Electron. J. Probab. 26, 1–37 (2021)

  33. Chen, L., Kim, K.: Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency. Acta Math. Sci. Ser. B (Engl. Ed.) 39(3), 645–668 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Chen, X.: Precise intermittency for the parabolic Anderson equation with an \((1+1)\)-dimensional time-space white noise. Ann. Inst. Henri Poincaré Probab. Stat. 51(4), 1486–1499 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Chong, C.: Lévy-driven Volterra equations in space and time. J. Theor. Probab. 30(3), 1014–1058 (2017)

    MATH  Google Scholar 

  36. Chong, C.: Stochastic PDEs with heavy-tailed noise. Stoch. Process. Appl. 127(7), 2262–2280 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Chong, C., Dalang, R.C., Humeau, T.: Path properties of the solution to the stochastic heat equation with Lévy noise. Stoch. Partial Differ. Equ. Anal. Comput. 7(1), 123–168 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Chong, C., Kevei, P.: Intermittency for the stochastic heat equation with Lévy noise. Ann. Probab. 47(4), 1911–1948 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Comets, F.: Directed Polymers in Random Environments, Volume 2175 of École d’Eté de Probabilités de Saint-Flour. Springer, Berlin (2016)

    Google Scholar 

  40. Comets, F., Cosco, C.: Brownian polymers in Poissonian environment: a survey. arXiv:1805.10899 (2018)

  41. Comets, F., Cosco, C., Mukherjee, C.: Renormalizing the Kardar–Parisi–Zhang equation in \(d\ge 3\) in weak disorder. J. Stat. Phys. 179(3), 713–728 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Comets, F., Nguyen, V.-L.: Localization in log-gamma polymers with boundaries. Probab. Theory Relat. Fields 166(1–2), 429–461 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Comets, F., Shiga, T., Yoshida, N.: Directed polymers in a random environment: path localization and strong disorder. Bernoulli 9(4), 705–723 (2003)

    MathSciNet  MATH  Google Scholar 

  44. Comets, F., Vargas, V.: Majorizing multiplicative cascades for directed polymers in random media. ALEA Lat. Am. J. Probab. Math. Stat. 2, 267–277 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Comets, F., Yoshida, N.: Directed polymers in a random environment are diffusive at weak disorder. Ann. Probab. 34(5), 1746–1770 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Comets, F., Yoshida, N.: Localization transition for polymers in Poissonian medium. Commun. Math. Phys. 323(1), 417–447 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Corwin, I., Ghosal, P., Shen, H., Tsai, L.-C.: Stochastic PDE limit of the six vertex model. Commun. Math. Phys. 375(3), 1945–2038 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Corwin, I., O’Connell, N., Seppäläinen, T., Zygouras, N.: Tropical combinatorics and Whittaker functions. Duke Math. J. 163(3), 513–563 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Cosco, C.: The intermediate disorder regime for Brownian directed polymers in Poisson environment. Indag. Math. 30(5), 805–839 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Dalang, R.C., Humeau, T.: Lévy processes and Lévy white noise as tempered distributions. Ann. Probab. 45(6B), 4389–4418 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Das, S., Tsai, L.-C.: Fractional moments of the stochastic heat equation. Ann. Inst. Henri Poincaré Probab. Stat. 57(2), 778–799 (2021)

    MathSciNet  MATH  Google Scholar 

  52. de la Peña, V. H., Giné, E.: Decoupling. Probability and its Applications (New York). From Dependence to Independence, Randomly Stopped Processes. \(U\)-Statistics and Processes. Martingales and Beyond. Springer, New York (1999)

  53. Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. B, volume 72 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, Theory of Martingales. Translated from the French by J. P, Wilson (1982)

  54. Derrida, B., Giacomin, G., Lacoin, H., Toninelli, F.L.: Fractional moment bounds and disorder relevance for pinning models. Commun. Math. Phys. 287(3), 867–887 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Dunlap, A., Gu, Y., Ryzhik, L., Zeitouni, O.: Fluctuations of the solutions to the KPZ equation in dimensions three and higher. Probab. Theory Relat. Fields 176(3–4), 1217–1258 (2020)

    MathSciNet  MATH  Google Scholar 

  56. Foondun, M., Liu, W., Omaba, M.: Moment bounds for a class of fractional stochastic heat equations. Ann. Probab. 45(4), 2131–2153 (2017)

    MathSciNet  MATH  Google Scholar 

  57. Gärtner, J., König, W., Molchanov, S.: Geometric characterization of intermittency in the parabolic Anderson model. Ann. Probab. 35(2), 439–499 (2007)

    MathSciNet  MATH  Google Scholar 

  58. Gärtner, J., Molchanov, S.A.: Parabolic problems for the Anderson model. I. Intermittency and related topics. Commun. Math. Phys. 132(3), 613–655 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Gel’fand, I.M., Vilenkin, N.Y.: Generalized Functions. Vol. 4: Applications of Harmonic Analysis. Academic Press, New York-London, 1964. Translated by Amiel Feinstein

  60. Gerhold, S.: Asymptotics for a variant of the Mittag–Leffler function. Integral Transforms Spec. Funct. 23(6), 397–403 (2012)

    MathSciNet  MATH  Google Scholar 

  61. Ghosal, P., Lin, Y.: Lyapunov exponents of the SHE for general initial data. Ann. Inst. H. Poincaré Probab. Statist. 59(1), 476–502 (2023)

  62. Giacomin, G., Lacoin, H., Toninelli, F.: Marginal relevance of disorder for pinning models. Commun. Pure Appl. Math. 63(2), 233–265 (2010)

    MathSciNet  MATH  Google Scholar 

  63. Giacomin, G., Lacoin, H., Toninelli, F.L.: Hierarchical pinning models, quadratic maps and quenched disorder. Probab. Theory Relat. Fields 147(1–2), 185–216 (2010)

    MathSciNet  MATH  Google Scholar 

  64. Gonçalves, P., Jara, M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)

    MathSciNet  MATH  Google Scholar 

  65. Gu, Y., Quastel, J., Tsai, L.-C.: Moments of the 2D SHE at criticality. Probab. Math. Phys. 2(1), 179–219 (2021)

    MathSciNet  MATH  Google Scholar 

  66. Gu, Y., Ryzhik, L., Zeitouni, O.: The Edwards–Wilkinson limit of the random heat equation in dimensions three and higher. Commun. Math. Phys. 363(2), 351–388 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, e6, 75 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Gubinelli, M., Perkowski, N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  69. Hairer, M.: Solving the KPZ equation. Ann. Math. (2) 178(2), 559–664 (2013)

    MathSciNet  MATH  Google Scholar 

  70. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  71. Halpin-Healy, T., Zhang, Y.-C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254(4), 215–414 (1995)

    ADS  Google Scholar 

  72. Imbrie, J.Z., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52, 608–626 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  73. Janson, S.: Bounds on the distributions of extremal values of a scanning process. Stoch. Process. Appl. 18(2), 313–328 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  74. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)

    MathSciNet  MATH  Google Scholar 

  75. Kallenberg, O.: Tangential existence and comparison, with applications to single and multiple integration. Probab. Math. Stat. 37(1), 21–52 (2017)

    MathSciNet  MATH  Google Scholar 

  76. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    ADS  MATH  Google Scholar 

  77. Khoshnevisan, D.: Analysis of Stochastic Partial Differential Equations, volume 119 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2014)

  78. Khoshnevisan, D., Kim, K., Xiao, Y.: Intermittency and multifractality: a case study via parabolic stochastic PDEs. Ann. Probab. 45(6A), 3697–3751 (2017)

    MathSciNet  MATH  Google Scholar 

  79. Khoshnevisan, D., Kim, K., Xiao, Y.: A macroscopic multifractal analysis of parabolic stochastic PDEs. Commun. Math. Phys. 360(1), 307–346 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  80. Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Probability and its Applications. Birkhäuser Boston Inc., Boston (1992)

    MATH  Google Scholar 

  81. Lacoin, H.: New bounds for the free energy of directed polymer in dimension \(1+1\) and \(1+2\). Commun. Math. Phys. 294(2), 471–503 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  82. Lacoin, H.: Influence of spatial correlation for directed polymers. Ann. Probab. 39(1), 139–175 (2011)

    MathSciNet  MATH  Google Scholar 

  83. Lacoin, H.: Existence of a non-averaging regime for the self-avoiding walk on a high-dimensional infinite percolation cluster. J. Stat. Phys. 154(6), 1461–1482 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  84. Last, G., Penrose, M.: Lectures on the Poisson Process. Institute of Mathematical Statistics Textbooks, vol. 7. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  85. Lê, K.: A remark on a result of Xia Chen. Stat. Probab. Lett. 118, 124–126 (2016)

    MathSciNet  MATH  Google Scholar 

  86. Marinelli, C., Röckner, M.: On Maximal Inequalities for Purely Discontinuous Martingales in Infinite Dimensions. In Séminaire de Probabilités XLVI, volume 2123 of Lecture Notes in Math., pp 293–315. Springer, Cham (2014)

  87. Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. Acta Math. 227(1), 115–203 (2021)

    MathSciNet  MATH  Google Scholar 

  88. Mueller, C.: The heat equation with Lévy noise. Stoch. Process. Appl. 74(1), 67–82 (1998)

    ADS  MATH  Google Scholar 

  89. Mukherjee, C., Shamov, A., Zeitouni, O.: Weak and strong disorder for the stochastic heat equation and continuous directed polymers in \(d\ge 3\). Electron. Commun. Probab. 21, 12 (2016)

    MATH  Google Scholar 

  90. Mukherjee, C., Varadhan, S.R.S.: Brownian occupation measures, compactness and large deviations. Ann. Probab. 44(6), 3934–3964 (2016)

    MathSciNet  MATH  Google Scholar 

  91. Mytnik, L.: Stochastic partial differential equation driven by stable noise. Probab. Theory Relat. Fields 123(2), 157–201 (2002)

    MathSciNet  MATH  Google Scholar 

  92. Nakashima, M.: Free energy of directed polymers in random environment in \(1+1\)-dimension at high temperature. Electron. J. Probab. 24, 43 (2019)

    MathSciNet  MATH  Google Scholar 

  93. Novikov, A.A.: Discontinuous martingales. Teor. Verojatnost. i Primemen. 20, 13–28 (1975)

    MathSciNet  Google Scholar 

  94. Rajput, B.S., Rosiński, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82(3), 451–487 (1989)

    MathSciNet  MATH  Google Scholar 

  95. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315–392 (2014)

    MathSciNet  MATH  Google Scholar 

  96. Saint Loubert Bié, E.: Étude d’une EDPS conduite par un bruit Poissonnien. Probab. Theory Relat. Fields 111(2), 287–321 (1998)

    MathSciNet  MATH  Google Scholar 

  97. Toninelli, F.L.: Coarse graining, fractional moments and the critical slope of random copolymers. Electron. J. Probab. 14(20), 531–547 (2009)

    MathSciNet  MATH  Google Scholar 

  98. Vargas, V.: Strong localization and macroscopic atoms for directed polymers. Probab. Theory Relat. Fields 138(3–4), 391–410 (2007)

    MathSciNet  MATH  Google Scholar 

  99. Viveros, R.: Directed polymer in \(\gamma \)-stable random environments. Ann. Inst. Henri Poincaré Probab. Stat. 57(2), 1081–1102 (2021)

    MathSciNet  MATH  Google Scholar 

  100. Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’été de Probabilités de Saint-Flour, XIV—1984, volume 1180 of Lecture Notes in Math., pp. 265–439. Springer, Berlin (1986)

  101. Yilmaz, A., Zeitouni, O.: Differing averaged and quenched large deviations for random walks in random environments in dimensions two and three. Commun. Math. Phys. 300(1), 243–271 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  102. Zel’dovich, Y.B., Molchanov, S.A., Ruzmaĭkin, A.A., Sokolov, D.D.: Intermittency in random media. Uspekhi Fiz. Nauk 152(1), 3–32 (1987)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Lacoin.

Additional information

Communicated by Horng-Tzer Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Some Technical Results

Appendix A: Some Technical Results

1.1 A.1. Proof of Theorem 4.3

The result is contained in [75], but only implicitly, so we give a short proof. Let us first check that (4.3) ensures that all integrals in (4.4) are well defined and finite. Applying the BDG inequality and using the subadditivity (5.4) of the function \(x\mapsto x^{p/2}\) for \(x>0\) iteratively, we deduce that

$$\begin{aligned}{} & {} \mathbb {E}\Biggl [ \biggl |\int _{ \mathbb {X}^N} f({\varvec{w}}) \prod _{j=1}^N M^{\omega }(\textrm{d}w_j) \biggr |^p \Biggr ]\nonumber \\{} & {} \quad \le C_p\,\mathbb {E}\Biggl [\Biggr (\int _\mathbb {X}\Biggl (\int _{\mathbb {X}^{N-1}} f({\varvec{w}}) \prod _{j=1}^{N-1} M^{\omega }(\textrm{d}w_j)\Biggr )^2\,\delta _{\omega }(\textrm{d}w_N)\Biggr )^{\frac{p}{2}} \Biggr ]\nonumber \\{} & {} \quad \le C_p\,\int _\mathbb {X}\mathbb {E}\Biggl [ \biggl |\int _{\mathbb {X}^{N-1}} f({\varvec{w}})\prod _{j=1}^N M^{\omega }(\textrm{d}w_j)\biggr |^p \Biggr ]\,\nu (\textrm{d}w_N)\nonumber \\{} & {} \quad \le \cdots \le C_p^N \int _{ \mathbb {X}^N} |f({\varvec{w}})|^p \,\nu (\textrm{d}w_{1})\cdots \nu (\textrm{d}w_N)<\infty . \end{aligned}$$
(A.1)

These inequalities remain unchanged if \({\omega }\) is replaced by \({\omega }_1,\ldots ,{\omega }_N\) and \(\mathbb {E}\) is replaced by \(\mathbb {E}^{\otimes N}\).

Now we move to the proof of (4.4), for which we shall prove the second inequality. To obtain the reverse inequality it is sufficient follow the same proof and observe that all estimates are two-sided (i.e., one can always substitute “\(\ge \)” for “\(\le \)” if one also replaces 1/C by C). We now consider a state space on which \({\omega }\) is jointly defined with our i.i.d. copies \({\omega }_1,\ldots ,{\omega }_N\) (and \({\omega }\) is independent of \(({\omega }_1,\ldots ,{\omega }_N)\)). We let \({\bar{\mathbb {P}}}:= \mathbb {P}\otimes \mathbb {P}^{\otimes N}\) denote the associated probability. In analogy with (1.5), we consider a filtration \(({\bar{\mathcal {F}}}_t)_{t\ge 0}\) on this state space defined by \({\bar{\mathcal {F}}}_t:= \mathcal {F}_t \otimes \mathcal {F}^{(1)}_t \otimes \cdots \otimes \mathcal {F}^{(N)}_t\), where \( \mathcal {F}^{(i)}_t:= \sigma ( {\omega }\cap ([0,t]\cap \mathbb {R}^d \times (0,\infty )) )\) for \(i=1,\ldots ,N\). Our result follows from applying the following inequality, valid for \(i=1,\ldots , N\), iteratively:

$$\begin{aligned}{} & {} {\bar{\mathbb {E}}}\bigg [ \int _{ \mathbb {X}^N} f({\varvec{w}})\prod _{j=1}^i M^{\omega }(\textrm{d}w_j)\prod _{j=i+1}^N M^{{\omega }_j}(\textrm{d}w_j)\bigg ]\nonumber \\{} & {} \quad \le \frac{C}{1-p} {\bar{\mathbb {E}}}\bigg [ \int _{ \mathbb {X}^N} f({\varvec{w}})\prod _{j=1}^{i-1} M^{\omega }(\textrm{d}w_j)\prod _{j=i}^N M^{{\omega }_j}(\textrm{d}w_j)\bigg ]. \end{aligned}$$
(A.2)

Let us first spend some time on the first step \(i=N\). By elementary properties of Itô integrals, \(X_t:=\int _{ \mathbb {X}^N} f({\varvec{w}}){\textbf{1}}_{(0,t]}(t_N)\prod _{j=1}^N M^{\omega }(\textrm{d}w_j)\) and \(Y_t:=\int _{ \mathbb {X}^N} f({\varvec{w}}){\textbf{1}}_{(0,t]}(t_N)(\prod _{j=1}^{N-1} M^{\omega }(\textrm{d}w_j))\, M^{{\omega }_N}(\textrm{d}w_N)\) define \((\bar{{\mathcal {F}}}_t)_{t\ge 0}\)-martingales, with \( [X]_t= \int _\mathbb {X}(\int _{ \mathbb {X}^{N-1}} f({\varvec{w}}){\textbf{1}}_{(0,t]}(t_N)\prod _{j=1}^{N-1} M^{\omega }(\textrm{d}w_j) )^2\,\delta _{{\omega }}(\textrm{d}w_N)\) and \([Y]_t= \int _\mathbb {X}(\int _{ \mathbb {X}^{N-1}} f({\varvec{w}}){\textbf{1}}_{(0,t]}(t_N)\prod _{j=1}^{N-1} M^{\omega }(\textrm{d}w_j) )^2\,\delta _{{\omega }_{N}}(\textrm{d}w_N)\) being the corresponding quadratic variation processes. Since \({\omega }\) and \({\omega }_N\) are Poisson random measures with the same \(({\bar{{{\mathcal {F}}}}}_t)_{t\ge 0}\)-intensity measures (namely \(\textrm{d}t\otimes \textrm{d}x\otimes {\lambda }(\textrm{d}z)\)), the jump measures associated to [X] and [Y] have the same predictable compensator in \(({\bar{{{\mathcal {F}}}}}_t)_{t\ge 0}\). As a result, X and Y are weakly tangential martingales in the sense of [75]. Thus, by [75, Thm. 4.1] and Doob’s inequality, there is \(C_p>0\) such that

$$\begin{aligned} {\bar{\mathbb {E}}} [ |X_{\infty }|^p ]\le {\bar{\mathbb {E}}}\bigg [ \sup _{t\ge 0} {|X_t|^p} \bigg ] \le C_p {\bar{\mathbb {E}}}\bigg [ \sup _{t\ge 0} {|Y_t|^p} \bigg ] \le C_p\bigg (\frac{ p}{p-1}\bigg )^p {\bar{\mathbb {E}}}[|Y_\infty |^p].\quad \end{aligned}$$
(A.3)

The reader can check that for the implicit constant \(C_p\) from [75, Thm. 4.2], one may take \( C_p:=(24p^2)^p [ 2\times 3^{p/2} ( 2^{p/2+1}+14\times 3^{p/2}(28\times 3^{p/2})^{p/2} ) ]\). The expression in brackets comes from the last equation in [75, p. 38] (with \({\varphi }(x)=|x|^{p/2}\) and \(c=(14\times 3^{p/2})^{-1}\)), while the computation in [75, p. 39], combined with the BDG inequality as in [53, Ch. VII, Thm. 92], entails an additional factor of \((24p^2)^p\). Most importantly, \(C_{p}\) is bounded uniformly in \(p\in (1,2]\), so that there exists a universal constant C such that for \(p\in (1,2]\), \( {\bar{\mathbb {E}}} [ |X_{\infty }|^p ]\ \le {C}(p-1)^{-1} {\bar{\mathbb {E}}} [ |Y_{\infty }|^p ], \) which finishes the proof of (A.2) for \(i=N\).

In order to iterate and prove (A.2) for \(i \le N-1\), we wish to interchange \(M^{\omega }(\textrm{d}w_1)\cdots M^{\omega }(\textrm{d}w_{i})\) with \(M^{{\omega }_{i+1}}(\textrm{d}w_{i+1})\cdots M^{{\omega }_{N}}(\textrm{d}w_{N})\) as follows:

$$\begin{aligned}{} & {} \int _{ \mathbb {X}^N} f({\varvec{w}})\prod _{j=1}^i M^{\omega }(\textrm{d}w_i)\prod _{j=i+1}^N M^{{\omega }_j}(\textrm{d}w_j) \nonumber \\{} & {} \quad =\int _{\mathbb {X}^{i}} \Biggl (\int _{\mathbb {X}^{N-i}} f({\varvec{w}})\prod _{j=i+1}^N M^{{\omega }_j}(\textrm{d}w_j)\Biggr ) \prod _{j=1}^i M^{\omega }(\textrm{d}w_i). \end{aligned}$$
(A.4)

Even though the integral on the r.h.s. is anticipative when considering the filtration \(({\bar{\mathcal {F}}}_t)_{t\ge 0}\), we can recover an integral in Itô’s sense by constructing the inner integrals \(\int _{\mathbb {X}^{N-i}} f({\varvec{w}})\prod _{j=i+1}^N M^{{\omega }_j}(\textrm{d}w_j)\) using the filtration \(({\bar{\mathcal {F}}}_t)_{t\ge 0}\) and the outer integrals using the filtration \({\bar{\mathcal {F}}}^{(i)}\) defined by \( {\bar{\mathcal {F}}}^{(i)}_t:= \mathcal {F}_t \otimes \bigotimes _{j=1}^i \mathcal {F}^{(j)}_t \otimes \bigotimes _{j=i+1}^N \mathcal {F}^{(j)}_\infty \). Note that the inner integrals are \({\bar{{{\mathcal {F}}}}}^{(i)}_0\)-measurable. With this convention, we can justify (A.4) as follows: It certainly holds if f is a step function, that is, if f only assumes finitely many values (in that case, the integrals are simply finite sums). For general f, take a sequence of step functions \((f_n)_{n\in \mathbb {N}}\) such that \(|f_n|\le |f|\) for all n and \(f_n\rightarrow f\) pointwise as \(n\rightarrow \infty \). Equation (A.4) holds for \(f_n\), and arguing similarly to (A.1) and using dominated convergence, we deduce (A.4). The fact that we are able to interpret the latter integral in Itô’s sense is crucial for the BDG inequality, which was needed in (A.1), to apply. Once (A.4) is established, we can prove (A.2) by considering the weakly tangential martingales (for the filtration \(({\bar{\mathcal {F}}}^{(i)}_t)_{t\ge 0}\))

$$\begin{aligned} X^{(i)}_t&:=\int _{\mathbb {X}^{i}} \Biggl (\int _{\mathbb {X}^{N-i}} f({\varvec{w}}){\textbf{1}}_{(0,t]}(t_i)\prod _{j=i+1}^N M^{{\omega }_j}(\textrm{d}w_j)\Biggr )\prod _{j=1}^i M^{{\omega }}(\textrm{d}w_j) \\ Y^{(i)}_t&:=\int _{\mathbb {X}^{i}} \Biggl (\int _{\mathbb {X}^{N-i}} f({\varvec{w}}){\textbf{1}}_{(0,t]}(t_i)\prod _{j=i+1}^N M^{{\omega }_j}(\textrm{d}w_j)\Biggr ) \prod _{j=1}^{i-1} M^{{\omega }}(\textrm{d}w_j) \,M^{{\omega }_i}(\textrm{d}w_{i}), \end{aligned}$$

applying (A.3) and re-arranging the integrals similarly to (A.4).

1.2 A.2. Proof of Lemma 4.4

For \(A, u,{\varepsilon }>0\) and \(H\in {{\mathcal {S}}}\) that satisfies \(|H|\le u|K|\), we have that

$$\begin{aligned}{} & {} \mathbb {P}\Biggl ( \Biggl |\int _\mathbb {X}H({\omega },t,x)\,\xi _{{\omega }_<}(\textrm{d}t,\textrm{d}x) \Biggr |>{\varepsilon }\Biggr ) \le \mathbb {P}_\ge \Bigl ( A u \Vert K\Vert _{\xi _{{\omega }_<},p; \mathbb {P}_{<}}>{\varepsilon }\Bigr )\\{} & {} \quad + \mathbb {P}\Biggl ( \Biggl |\int _\mathbb {X}H({\omega },t,x)\,\xi _{{\omega }_<}(\textrm{d}t,\textrm{d}x) \Biggr |>uA\Vert K\Vert _{\xi _{{\omega }_<},p; \mathbb {P}_{<}}\Biggr ). \end{aligned}$$

The second probability is bounded by

$$\begin{aligned} \mathbb {E}_{\ge }\Biggl [ \frac{1}{u^pA^p\Vert K\Vert ^p_{\xi _{{\omega }_<},p; \mathbb {P}_{<}}} \mathbb {E}_<\left[ \left|\int _\mathbb {X}H({\omega },t,x)\,\xi _{{\omega }_<}(\textrm{d}t,\textrm{d}x) \right|^p \right] \Biggr ]\le A^{-p}. \end{aligned}$$

Therefore, using dominated convergence for the first term, we get

$$\begin{aligned}{} & {} \lim _{u\rightarrow 0}\sup _{H\in {{\mathcal {S}}},|H|\le u|K|}\mathbb {P}\Biggl ( \Biggl |\int _\mathbb {X}H({\omega },t,x)\,\xi _{{\omega }_<}(\textrm{d}t,\textrm{d}x) \Biggr |>{\varepsilon }\Biggr ) \\{} & {} \quad \le \lim _{u\rightarrow 0} \mathbb {E}_\ge [{\textbf{1}}_{\{ A u \Vert K\Vert _{\xi _{{\omega }_<},p; \mathbb {P}_{<}}>{\varepsilon }\}}]+A^{-p}\le A^{-p}. \end{aligned}$$

Sending \(A\rightarrow \infty \) shows that the left-hand side is 0, which is equivalent to \(\Vert uK\Vert _{\xi _<,0}\rightarrow 0\) as \(u\rightarrow 0\). By (4.6), K is integrable with respect to \(\xi _{{\omega }_<}\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, Q., Chong, C. & Lacoin, H. The Stochastic Heat Equation with Multiplicative Lévy Noise: Existence, Moments, and Intermittency. Commun. Math. Phys. 402, 2215–2299 (2023). https://doi.org/10.1007/s00220-023-04768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04768-9

Navigation