Skip to main content
Log in

Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

This paper studies the stochastic heat equation driven by time fractional Gaussian noise with Hurst parameter \(H\in (0,1/2)\). We establish the Feynman–Kac representation of the solution and use this representation to obtain matching lower and upper bounds for the \(L^p(\Omega )\) moments of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Balan, R.M., Conus, D.: Intermittency for the wave and heat equations with fractional noise in time. Ann. Probab. 44(2), 1488–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertini, L., Cancrini, N.: The stochastic heat equation: Feynman–Kac formula and intermittence. J. Stat. Phys. 78(5–6), 1377–1401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carmona, R., Molchanov, S.A.: Parabolic Anderson problem and intermittency. Mem. Am. Math. Soc. 108(518), vii\(+\)125 (1994)

  4. Chen, L., Dalang, R.C.: Moments, intermittency, and growth indices for the nonlinear stochastic heat equation with rough initial conditions. Ann. Probab. 43(6), 3006–3051 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, L., Hu, Y., Nualart, D.: Nonlinear stochastic time-fractional slow and fast diffusion equations on \(\mathbb{R}^d\). Preprint arXiv:1509.07763 (2015)

  6. Conus, D., Joseph, M., Khoshnevisan, D., Shiu, S.-Y.: On the chaotic character of the stochastic heat equation II. Probab. Theory Relat. Fields 156(3–4), 483–533 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Foondun, M., Khoshnevisan, D.: Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14, 548–568 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, Y.: Analysis on Gaussian Spaces. World Scientific, New Jersay (2016)

    Book  Google Scholar 

  9. Hu, Y., Huang, J., Nualart, D., Tindel, S.: Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J. Probab. 20(55), 50 (2015)

    MATH  Google Scholar 

  10. Hu, Y., Lê, K.: Nonlinear Young integrals and differential systems in Hölder media. Trans. Am. Math. Soc. 369(3), 1935–2002 (2017)

    Article  MATH  Google Scholar 

  11. Hu, Y., Lu, F., Nualart, D.: Feynman–Kac formula for the heat equation driven by fractional noise with Hurst parameter \(H<1/2\). Ann. Probab. 40(3), 1041–1068 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, Y., Nualart, D.: Stochastic heat equation driven by fractional noise and local time. Probab. Theory Relat. Fields 143(1–2), 28–328 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Hu, Y., Nualart, D., Song, J.: Fractional martingales and characterization of the fractional Brownian motion. Ann. Probab. 37(6), 2404–2430 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalbasi, K., Mountford, T.S.: Feynman–Kac representation for the parabolic Anderson model driven by fractional noise. J. Funct. Anal. 269(5), 1234–1263 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mémin, J., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat. Probab. Lett. 51(2), 197–206 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nualart, D.: The Malliavin Calculus and Related Topics (2nd edn). Probability and Its Applications (New York). Springer, Berlin (2006)

  17. Olver, F.W.J., Lozier, DW., Boisvert, RF., Clark, CW.: NIST handbook of mathematical functions. U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC (2010)

  18. Pipiras, V., Taqqu, M.S.: Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7(6), 873–897 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press Inc., San Diego (1999)

    MATH  Google Scholar 

  20. Zel’dovich, Y.B., Ruzmaĭkin, A.A., Sokoloff, D.D.: The almighty chance. Translated from the Russian by Anvar Shukurov. World Scientific Lecture Notes in Physics, vol. 20. World Scientific Publishing Co., Inc., River Edge, NJ (1990)

Download references

Acknowledgements

The authors wish to thank the referees for their useful suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Nualart.

Additional information

Hu is partially supported by a Grant from the Simons Foundation #209206; Nualart is partially supported by the NSF Grant DMS1512891 and the ARO Grant FED0070445.

Kalbasi is supported by a fellowship from the Swiss National Science Foundation.

Appendix

Appendix

Lemma 4.4

For all \(a, b, u,v,w >0\), if \(u+v\le w+1/2\) and \(w>1/2\), then

$$\begin{aligned} \sup _{n\in \mathbb {N}}\frac{\Gamma (an+u)\Gamma (bn+v)}{\Gamma ((a+b)n+w)}<\infty . \end{aligned}$$

Proof

We only need to show that

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\Gamma (an+u)\Gamma (bn+v)}{\Gamma ((a+b)n+w)}<\infty . \end{aligned}$$

By Stirling’s formula (see [17, 5.11.3 or 5.11.7]), as n is large, we see that

$$\begin{aligned} \frac{\Gamma (an+u)\Gamma (bn+v)}{\Gamma ((a+b)n+w)}&\approx \sqrt{\pi }\exp \Big \{(an+u-1/2)\log (an)\\&\quad +(bn+v-1/2)\log (bn)\\&\quad -((a+b)n+w-1/2)\log ((a+b)n)\Big \}. \end{aligned}$$

Denote the right-hand side of the above quantity by \(I_n\). By the supper-additivity of \(f(x)=x\log x\), namely \(f(x+y)\ge f(x)+f(y)\) for all \(x,y\ge 0\), we see that

$$\begin{aligned} I_n\le \sqrt{\pi }\exp \Big \{ (u-1/2)\log (an)+ (v-1/2)\log (bn)-(w-1/2)\log ((a+b)n) \Big \}. \end{aligned}$$

Because \(w>1/2\), we can apply the inequality \(\log ((a+b)n)\ge \frac{1}{2}[\log (an)+\log (bn)]\) to obtain that

$$\begin{aligned} I_n\!\le&\,\sqrt{\pi }\exp \Big \{ (u\!-\!1/4\!-\!w/2)\log a\!+\! (v\!-\!1/4\!-\!w/2)\log b \!+\!(u\!+\!v\!-\!w\!-\!1/2)\!\log n \Big \}\\&= C n^{u+v-w-1/2} \!\le \!C,\quad \text {for all } n\in \mathbb {N}, \end{aligned}$$

where the last inequality is due to the assumption that \(u+v-w-1/2\le 0\). \(\square \)

Let \(E_{\alpha ,\beta }(z)\) be the Mittag–Leffler function

$$\begin{aligned} E_{\alpha ,\beta }(z)=\sum _{n=0}^\infty \frac{z^n}{\Gamma (\alpha n+\beta )}, \quad \mathfrak {R}\alpha >0,\, \beta \in \mathbb {C},\, z\in \mathbb {C}. \end{aligned}$$

Lemma 4.5

(Theorem 1.3 p. 32 in [19]) If \(0<\alpha <2\), \(\beta \) is an arbitrary complex number and \(\mu \) is an arbitrary real number such that

$$\begin{aligned} \pi \alpha /2<\mu <\pi \wedge (\pi \alpha )\;, \end{aligned}$$

then for an arbitrary integer \(p\ge 1\) the following expression holds:

$$\begin{aligned} E_{\alpha ,\beta }(z)= & {} \frac{1}{\alpha } z^{(1-\beta )/\alpha } \exp \left( z^{1/\alpha }\right) \\&-\sum _{k=1}^p \frac{z^{-k}}{\Gamma (\beta -\alpha k)} + O\left( |z|^{-1-p}\right) ,\, |z|\rightarrow \infty ,\, |\arg (z)|\le \mu \,. \end{aligned}$$

Lemma 4.6

For all \(\alpha >0\) and \(\beta \le 1\), there exists some constant \(C=C_{\alpha ,\beta }\ge 1\) such that

$$\begin{aligned} E_{\alpha ,\beta }(z) \le C \exp \left\{ C z^{1/\alpha }\right\} ,\quad \text {for all } z\ge 0. \end{aligned}$$

Proof

By Lemma 4.5, we see that for some constants \(C_{\alpha ,\beta }'>0\) and \(C_{\alpha ,\beta }\ge 1\),

$$\begin{aligned} E_{\alpha ,\beta }(z)\le C_{\alpha ,\beta }'\left( 1+z^{(1-\beta )/\alpha } \exp \left( z^{1/\alpha }\right) \right) \le C_{\alpha ,\beta }\exp \left( C_{\alpha ,\beta } z^{1/\alpha }\right) , \end{aligned}$$

for all \(z\ge 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Hu, Y., Kalbasi, K. et al. Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise. Probab. Theory Relat. Fields 171, 431–457 (2018). https://doi.org/10.1007/s00440-017-0783-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-017-0783-z

Keywords

Mathematics Subject Classification

Navigation