Skip to main content
Log in

Honeycomb Hubbard Model at van Hove Filling

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to the rigorous study of the low temperature properties of the two-dimensional weakly interacting Hubbard model on the honeycomb lattice in which the renormalized chemical potential \(\mu \) has been fixed such that the Fermi surface consists of a set of exact triangles. Using renormalization group analysis around the Fermi surface, we prove that this model is not a Fermi liquid in the mathematically precise sense of Salmhofer. The main result is proved in two steps. First we prove that the perturbation series for Schwinger functions as well as the self-energy function have non-zero radius of convergence when the temperature T is above an exponentially small value, namely \({T_0\sim \exp {(-C|\lambda |^{-1/2})}}\). Then we prove the necessary lower bound for second derivatives of self-energy w.r.t. the external momentum and achieve the proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Although summation over all scales of the tadpole terms is not absolutely convergent for \(k_0\rightarrow \infty \), this sum can be controlled by using the explicit expression of the single scale propagator.

  2. The interested readers who are familiar with the sectors for strictly convex Fermi surfaces (cf. [6, 13, 14, 18]) are invited to compare the different decaying properties.

References

  1. Abdesselam, A., Rivasseau, V.: Trees, forests and jungles: a botanical garden for cluster expansions. In: Constructive Physics, Lecture Notes in Physics 446. Springer (1995)

  2. Afchain, S., Magnen, J., Rivasseau, V.: Renormalization of the 2-point function of the Hubbard model at half-filling. Ann. Henri Poincaré 6, 399–448 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Afchain, S., Magnen, J., Rivasseau, V.: The two dimensional Hubbard model at half-filling, part III: the lower bound on the self-energy. Ann. Henri Poincaré 6, 449–483 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Benfatto, G., Gallavotti, G.: Perturbation theory of the Fermi surface in a quantum liquid. A general quasiparticle formalism and one dimensional systems. J. Stat. Phys. 59, 541–664 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Benfatto, G., Gallavotti, G.: Renormalization Group, Physics Notes, vol. 1. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  6. Benfatto, G., Giuliani, A., Mastropietro, V.: Fermi liquid behavior in the 2D Hubbard model at low temperatures. Ann. Henri Poincaré 7, 809–898 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  8. Brydges, D., Kennedy, T.: Mayer expansions and the Hamilton–Jacobi equation. J. Stat. Phys. 48, 19 (1987)

    ADS  MathSciNet  Google Scholar 

  9. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  10. Baeriswyl, D., Campbell, D., Carmelo, J., Guinea, F., Louis, E.: The Hubbard Model, Nato ASI series, vol. 343. Springer Science+Business Media, New York (1995)

    MATH  Google Scholar 

  11. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    ADS  Google Scholar 

  12. Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)

    ADS  Google Scholar 

  13. Disertori, M., Rivasseau, V.: Interacting Fermi liquid in two dimensions at finite temperature, Part I—convergent attributions. Commun. Math. Phys. 215, 251–290 (2000)

    ADS  MATH  Google Scholar 

  14. Disertori, M., Rivasseau, V.: Interacting Fermi liquid in two dimensions at finite temperature, Part II—renormalization. Commun. Math. Phys. 215, 291–341 (2000)

    ADS  MATH  Google Scholar 

  15. Fefferman, C., Weinstein, M.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25, 1169–1220 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Fefferman, C., Lee-Thorp, J.P., Weinstein, M.: Honeycomb Schrödinger operators in the strong binding regime. Commun. Pure Appl. Math. 71, 1178–1270 (2018)

    MATH  Google Scholar 

  17. Feldman, J., Magnen, J., Rivasseau, V., Trubowitz, E.: An infinite volume expansion for many fermions Green functions. Helv. Phys. Acta 65, 679–721 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Feldman, J., Knörrer, H., Trubowitz, E.: A two dimensional fermi liquid. Commun. Math. Phys 247, 1–319 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Feldman, J., Salmhofer, M.: Singular Fermi surfaces. I. General power counting and higher dimensional cases. Rev. Math. Phys. 20, 233–274 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Feldman, J., Salmhofer, M.: Singular Fermi surfaces. II. The two-dimensional case. Rev. Math. Phys. 20, 275–334 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Feldman, J., Salmhofer, M., Trubowitz, E.: Perturbation theory around nonnested Fermi surfaces. I. Keeping the Fermi surface fixed. J. Stat. Phys. 84, 1209–1336 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Feldman, J., Salmhofer, M., Trubowitz, E.: An inversion theorem in Fermi surface theory. Commun. Pure Appl. Math. 53, 1350–1384 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Feldman, J., Trubowitz, E.: Perturbation theory for many fermion systems. Helv. Phys. Acta 63, 156–260 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Gallavotti, G., Nicolò, F.: Renormalization theory for four dimensional scalar fields. Part I. Commun. Math. Phys. 100, 545–590 (1985)

    ADS  Google Scholar 

  25. Gallavotti, G., Nicolò, F.: Renormalization theory for four dimensional scalar fields. Part II. Commun. Math. Phys. 101, 471–562 (1985)

    Google Scholar 

  26. Gawedzki, K., Kupiainen, A.: Gross–Neveu model through convergent perturbation expansions. Commun. Math. Phys. 102, 1–30 (1985)

    ADS  MathSciNet  Google Scholar 

  27. Giuliani, A., Mastropietro, V.: The two-dimensional Hubbard model on the honeycomb lattice. Commun. Math. Phys. 293, 301–346 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Hubbard, J.: Electron correlations in narrow energy bands. Proc. R. Soc. (Lond.) A276, 238–257 (1963)

    ADS  Google Scholar 

  29. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. Dover Publications, New York (2005)

    MATH  Google Scholar 

  30. Kotov, V.N., Uchoa, B., Pereira, V.M., Guinea, F., Castro Neto, A.H.: Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012)

    ADS  Google Scholar 

  31. Lifshitz, I.M.: Anomalies of electron characteristics of a metal in the high pressure. Sov. Phys. JETP 11, 1130 (1960)

    Google Scholar 

  32. Lint, S., et al.: Introducing strong correlation effects into graphene by gadolinium interaction. Phys. Rev. B 100, 121407(R) (2019)

    ADS  Google Scholar 

  33. Krajewski, T., Rivasseau, V., Tanasa, A., Wang, Z.: Topological graph polynomials and quantum field theory, Part I: Heat kernel theories. J. Noncommut. Geom. 4, 29 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Lesniewski, A.: Effective action for the Yukawa\(_2\) quantum field theory. Commun. Math. Phys. 108, 437–467 (1987)

    ADS  MathSciNet  Google Scholar 

  35. Mastropietro, V.: Non-Perturbative Renormalization. World Scientific, Singapore (2008)

    MATH  Google Scholar 

  36. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    ADS  Google Scholar 

  37. Rivasseau, V.: The two dimensional Hubbard model at half-filling. I. Convergent contributions. J. Stat. Phys. 106, 693–722 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Rivasseau, V.: From Perturbative Renormalization to Constructive Renormalization. Princeton University Press, Princeton

  39. McChesney, J.L., et al.: Extended van Hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 104, 136803 (2010)

    ADS  Google Scholar 

  40. Rosenberg, P., et al.: Tuning the doping level of graphene in the vicinity of the Van Hove singularity via ytterbium intercalation. Phys. Rev. B 100, 035445 (2019)

    ADS  Google Scholar 

  41. Rosenberg, P., et al.: Overdoping graphene beyond the van Hove singularity. Phys. Rev. Lett. 125, 176403 (2020)

    ADS  Google Scholar 

  42. Rivasseau, V., Wang, Z.: How to Resum Feynman graphs. Ann. Henri Poincare 15(11), 2069 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Salmhofer, M.: Continuous renormalization for Fermions and Fermi liquid theory. Commun. Math. Phys. 194, 249–295 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622–634 (1947)

    ADS  MATH  Google Scholar 

  45. Wang, Z.: On the sector counting lemma. Lett. Math. Phys. 111, 128 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Zhituo Wang is very grateful to Horst Knörrer for useful discussions and encouragements, and to Alessandro Giuliani and Vieri Mastropietro for useful discussions. Part of this work has been finished during Zhituo Wang’s visit to the Institute of Mathematics, University of Zurich. He is also very grateful to Benjamin Schlein for invitation and hospitality. We are grateful to the anonymous referee for his comments and suggestions, which lead to significant improvements of the first manuscript. Zhituo Wang is supported by NSFC Nos. 12071099 and 11701121. Vincent Rivasseau is supported by Paris-Saclay University and the IJCLab of the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhituo Wang.

Additional information

Communicated by M. Salmhofer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivasseau, V., Wang, Z. Honeycomb Hubbard Model at van Hove Filling. Commun. Math. Phys. 401, 2569–2642 (2023). https://doi.org/10.1007/s00220-023-04696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04696-8

Navigation